Skip to main content

Advertisement

Log in

Possible allosteric interactions of monoindazole-substituted P2 cyclic urea analogues with wild-type and mutant HIV-1 protease

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Our ongoing efforts to understand the difference in the binding pattern of HIV-1 protease inhibitor (HIVPI) with the wild-type and mutant HIV-1 protease (HIVPR) and to provide mechanistic insight are continued further. We report here the results of a recent quantitative structure–activity relationship (QSAR) study on monoindazole-substituted P2 analogues of cyclic urea HIVPIs. The QSAR models revealed an inverted parabolic relationship between biological activity and calculated molar refractivity (CMR). That is, biological activity first decreases with increase in CMR and at a certain minimum point (inversion point) it suddenly changes and increases with further increase in CMR. CMR is a measure of volume-dependent-polarizability and is an indication of the polar interactions between ligand and receptor. The results seem to be best rationalized by larger molecules inducing a change in a receptor unit that allows for a new mode of interaction. Similar QSAR models were also observed for the biological activity of these molecules tested against a panel of mutant viruses including mutant strains with single amino acid substitution (I84V), double amino acid substitutions (I84V/V82F), and multiple amino acid changes corresponding to mutations observed in clinical isolates of patients treated with Ritonavir®. Interestingly the inversion points for these mutant strains were found larger than for wild-type. The subtle but significant difference in the inversion point indicates change in the shape and size of the binding pocket. Earlier QSAR studies have shown that the correlation of biological activity with an inverted parabola is an indicative of the ‘allosteric interaction’ of the ligands with the receptor. This report presents a detail analysis of these observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Chrusciel RA, Strohbach JW (2004) Curr Top Med Chem 4:1097

    Article  CAS  Google Scholar 

  2. Gulick RM (2003) Clin Microbiol Infect 9:186

    Article  CAS  Google Scholar 

  3. van Heeswijk RP, Veldkamp A, Mulder JW, Meenhorst PL, Lange JM, Beijnen JH, Hoetelmans RM (2001) Antivir Ther 6:201

    Google Scholar 

  4. Turner D, Schapiro JM, Brenner BG, Wainberg MA (2004) Antivir Ther 9:301

    CAS  Google Scholar 

  5. Mehandru S, Markowitz M (2003) Expert Opin Investig Drugs 12:1821

    Article  CAS  Google Scholar 

  6. (a) Fujita T (1997) Quant Struct-Act Relat 16:107; (b) Yang GF, Huang X (2006) Curr Pharm Des 12:4601

  7. Walters WP, Murcko MA (2002) Adv Drug Deliv Rev 54:255

    Article  CAS  Google Scholar 

  8. (a) Jorgensen WL, Duffy EM (2002) Adv Drug Deliv Rev 54:355; (b) Abdel-Rahman HM, Al-karamany GS, El-Koussi NA et al (2002) Curr Med Chem 9:1905

  9. (a) Hansch C, Leo A, Mekapati SB, Kurup A (2004) Bioorg Med Chem 12:3391; (b) Luco JM, Marchevsky E (1999) J Chem Inf Comput Sci 39:396

    Google Scholar 

  10. (a) Garg R, Gupta SP, Gao H, Mekapati SB, Debnath AK, Hansch C (1999) Chem Rev 99:3525; (b) Kurup A, Garg R, Hansch C (2001) Chem Rev 101:2573

  11. (a) Kurup A, Mekapati SB, Garg R, Hansch C (2003) Curr Med Chem 10:1819; (b) Debnath AK (2005) Curr Pharm Des 11:3091; (c) Gayathri P, Pande V, Sivakumar R, Gupta SP (2001) Bioorg Med Chem 9:3059

  12. Bhhatarai B, Garg R (2005) Bioorg Med Chem 13:4078

    Article  CAS  Google Scholar 

  13. Patel D, Garg R (2005) Bioorg Med Chem Lett 15:3767

    Article  CAS  Google Scholar 

  14. De Lucca GV, Kim UT, Liang J, Cordova B, Klabe RM, Garber S, Bacheler LT, Lam GN, Wright MR, Logue KA, Erickson-Viitanen S, Ko SS, Trainer GL (1998) J Med Chem 41:2411

    Article  Google Scholar 

  15. (a) Hansch C, Garg R, Kurup A, Mekapati SB (2003) Bioorg Med Chem 11:2075; (b) Hansch C, Garg R, Kurup A (2001) Bioorg Med Chem 9:283

  16. (a) Mekapati SB, Hansch C (2001) Bioorg Med Chem 9:2885; (b) Garg R, Kurup A, Hansch C (2001) Bioorg Med Chem 9:3161; (c) Christopoulos A (2002) Nat Rev Drug Discov 1:198

  17. Lam PYS, Ru Y, Jadhav PK, Aldrich PE, De Lucca GV, Eyermann CJ, Chang C-H, Emmett G, Holler ER, Daneker WF, Li L, Confalone PN, McHugh RJ, Han Q, Markwalder JA, Seitz SP, Bacheler LT, Rayner MM, Klabe RM, Shum L, Winslow DL, Kornhauser DM, Jackson DA, Erickson-Viitanen S, Sharpe TR, Hodge CN (1996) J Med Chem 39:3514

    Article  CAS  Google Scholar 

  18. Cramer RD III, Bunce JD, Patterson DE, Frank IE (1988) Quant Struct-Act Relat 7:18

    Article  Google Scholar 

  19. CQSAR program, Biobyte Corp., 201 W. 4th street, Claremont, CA 91711

  20. Leo A (1993) Chem Rev 93:1281

    Article  CAS  Google Scholar 

  21. (a) Hansch C, Leo A (eds) (1995) Exploring QSAR: fundamentals and applications in chemistry and biology. American Chemical Society, Washington; (b) Hansch C, Leo A, Hoekman D (eds) Exploring QSAR: hydrophobic, electronic and steric constants. American Chemical Society, Washington

  22. Garg R, Bhhatarai B (2004) Bioorg Med Chem 12:5819

    Article  CAS  Google Scholar 

  23. (a) Koshland DE Jr (1958) Proc Natl Acad Sci USA 44:98; (b) Koshland DE Jr, Boyer PD (eds) (1970) The enzymes, vol 1. Academic Press, New York, p 342

  24. (a) Hansch C, Klein T (1986) Acc Chem Res 19:392; (b) Kubinyi H (ed) (1993) QSAR: Hansch analysis and related approaches. VCH, New York

  25. (a) Monod J, Changeux J-P, Jacob F (1963) J Mol Biol 6:306; (b) Monod J, Wyman J, Changeux J-P (1965) J Mol Biol 12:88

  26. (a) Toh H, Ono M, Saigo K, Miyata T (1985) Nature 315:691; (b) Miller M, Jaskolski M, Rao JKM, Leis J, Wlodawer A (1989) Nature 337:576

  27. McCammon JA (2005) Biochim Biophys Acta 1754:221

    CAS  Google Scholar 

  28. (a) Perryman AL, Lin J-H, McCammon JA (2004) Protein Sci 13:1108; (b) Perryman AL, Lin J-H, McCammon JA (2006) Chem Biol Drug Des 67:336; (c) Perryman AL, Lin J-H, McCammon JA (2006) Biopolymers 82:272

  29. Hornak V, Simmerling C (2007) Drug Discov Today 12:132

    Article  CAS  Google Scholar 

  30. Babine RE, Bender SL (1997) Chem Rev 97:1359

    Article  CAS  Google Scholar 

  31. Appelt K (1993) Perspect Drug Discov Des 1:23

    Article  CAS  Google Scholar 

  32. Gunasekaran K, Ma B, Nussinov R (2004) Proteins 57:433

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by grant 2 R15 GM 069323-02 from NIH/NIGMS. The authors are indebted to Biobyte Corp., Claremont, CA for the use of CQSAR program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajni Garg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garg, R., Bhhatarai, B. Possible allosteric interactions of monoindazole-substituted P2 cyclic urea analogues with wild-type and mutant HIV-1 protease. J Comput Aided Mol Des 22, 737–745 (2008). https://doi.org/10.1007/s10822-008-9210-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-008-9210-y

Keywords

Navigation