Skip to main content
Log in

Homo-timeric structural model of human microsomal prostaglandin E synthase-1 and characterization of its substrate/inhibitor binding interactions

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Inducible, microsomal prostaglandin E synthase 1 (mPGES-1), the terminal enzyme in the prostaglandin (PG) biosynthetic pathway, constitutes a promising therapeutic target for the development of new anti-inflammatory drugs. To elucidate structure–function relationships and to enable structure-based design, an mPGES-1 homology model was developed using the three-dimensional structure of the closest homologue of the MAPEG family (Membrane Associated Proteins in Eicosanoid and Glutathione metabolism), mGST-1. The ensuing model of mPGES-1 is a homo-trimer, with each monomer consisting of four membrane-spanning segments. Extensive structure refinement revealed an inter-monomer salt bridge (K26-E77) as well as inter-helical interactions within each monomer, including polar hydrogen bonds (e.g. T78-R110-T129) and hydrophobic π-stacking (F82-F103-F106), all contributing to the overall stability of the homo-trimer of mPGES-1. Catalytic co-factor glutathione (GSH) was docked into the mPGES-1 model by flexible optimization of both the ligand and the protein conformations, starting from the initial location ascertained from the mGST-1 structure. Possible binding site for the substrate, prostaglandin H2 (PGH2), was identified by systematically probing the refined molecular structure of mPGES-1. A binding model was generated by induced fit docking of PGH2 in the presence of GSH. The homology model prescribes three potential inhibitor binding sites per mPGES-1 trimer. This was further confirmed experimentally by equilibrium dialysis study which generated a binding stoichiometric ratio of approximately three inhibitor molecules to three mPGES-1 monomers. The structural model that we have derived could serve as a useful tool for structure-guided design of inhibitors for this emergently important therapeutic target.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bresell A, Weinander R, Lundqvist G, Raza H, Shimoji M, Sun T-H et al (2005) FEBS J 272:1688. doi:10.1111/j.1742-4658.2005.04596.x

    Article  CAS  Google Scholar 

  2. Jakobsson P-J, Thoren S, Morgenstern R, Samuelsson B (1999) Proc Natl Acad Sci USA 96:7220. doi:10.1073/pnas.96.13.7220

    Article  CAS  Google Scholar 

  3. Jakobsson P-J, Morgenstern R, Mancini J, Ford-Hutchinson A, Persson B (1999) Protein Sci 8:689

    CAS  Google Scholar 

  4. Naraba H, Murakami M, Matsumoto H, Shimbara S, Ueno A, Kudo I et al (1998) J Immunol 160:2974

    CAS  Google Scholar 

  5. Pettersson PL, Thoren S, Jakobsson P-J (2005) Methods Enzymol 401:147. doi:10.1016/S0076-6879(05)01009-8

    Article  CAS  Google Scholar 

  6. Murakami M, Kudo I (2004) Prog Lipid Res 43:3. doi:10.1016/S0163-7827(03)00037-7

    Article  CAS  Google Scholar 

  7. Tanioka T, Nakatani Y, Semmyo N, Murakami M, Kudo I (2000) J Biol Chem 275:32775. doi:10.1074/jbc.M003504200

    Article  CAS  Google Scholar 

  8. Zhang Y, Schneider A, Rao R, Lu WJ, Fan X, Davis L et al (2003) Biochim Biophys Acta Mol Cell Biol Lipids 1634:15

    Article  CAS  Google Scholar 

  9. Watanabe K, Kurihara K, Tokunaga Y, Hayaishi O (1997) Biochem Biophys Res Commun 235:148. doi:10.1006/bbrc.1997.6708

    Article  CAS  Google Scholar 

  10. Tanikawa N, Ohmiya Y, Ohkubo H, Hashimoto K, Kangawa K, Kojima M et al (2002) Biochem Biophys Res Commun 291:884. doi:10.1006/bbrc.2002.6531

    Article  CAS  Google Scholar 

  11. Murakami M, Nakashima K, Kamei K, Masuda S, Ishikawa Y, Ishii T et al (2003) J Biol Chem 278:37937. doi:10.1074/jbc.M305108200

    Article  CAS  Google Scholar 

  12. Weaver AJ, Sullivan WP, Felts SJ, Owen BA, Toft DO (2000) J Biol Chem 275:23045. doi:10.1074/jbc.M003410200

    Article  CAS  Google Scholar 

  13. Kudo I, Murakami M (2005) J Biochem Mol Biol 38:633

    CAS  Google Scholar 

  14. Yamada T, Komoto J, Watanabe K, Ohmiya Y, Takusagawa F (2005) J Mol Biol 348:1163. doi:10.1016/j.jmb.2005.03.035

    Article  CAS  Google Scholar 

  15. Yamada T, Takusagawa F (2007) Biochemistry 46:8414. doi:10.1021/bi700605m

    Article  CAS  Google Scholar 

  16. Thoren S, Weinander R, Saha S, Jegerschold C, Pettersson PL, Samuelsson B et al (2003) J Biol Chem 278:22199. doi:10.1074/jbc.M303227200

    Article  CAS  Google Scholar 

  17. Murakami M, Naraba H, Tanioka T, Semmyo N, Nakatani Y, Kojima F et al (2000) J Biol Chem 275:32783. doi:10.1074/jbc.M003505200

    Article  CAS  Google Scholar 

  18. Uematsu S, Matsumoto M, Takeda K, Akira S (2002) J Immunol 168:5811

    CAS  Google Scholar 

  19. Mabuchi T, Kojima H, Abe T, Takagi K, Sakurai M, Ohmiya Y et al (2004) Neuroreport 15:1395. doi:10.1097/01.wnr.0000129372.89000.31

    Article  CAS  Google Scholar 

  20. Kojima F, Naraba H, Miyamoto S, Beppu M, Aoki H, Kawai S (2004) Arthritis Res Ther 6:R355. doi:10.1186/ar1195

    Article  CAS  Google Scholar 

  21. Samuelsson B, Morgenstern R, Jakobsson P-J (2007) Pharmacol Rev 59:207. doi:10.1124/pr.59.3.1

    Article  CAS  Google Scholar 

  22. Ikeda-Matsuo Y, Ota A, Fukada T, Uematsu S, Akira S, Sasaki Y (2006) Proc Natl Acad Sci USA 103:11790. doi:10.1073/pnas.0604400103

    Article  CAS  Google Scholar 

  23. Mnich SJ, Veenhuizen AW, Monahan JB, Sheehan KCF, Lynch KR, Isakson PC et al (1995) J Immunol 155:4437

    CAS  Google Scholar 

  24. Kamei D, Yamakawa K, Takegoshi Y, Mikami-Nakanishi M, Nakatani Y, Oh-ishi S et al (2004) J Biol Chem 279:33684. doi:10.1074/jbc.M400199200

    Article  CAS  Google Scholar 

  25. Ikeda-Matsuo Y, Ikegaya Y, Matsuki N, Uematsu S, Akira S, Sasaki Y (2005) J Neurochem 94:1546. doi:10.1111/j.1471-4159.2005.03302.x

    Article  CAS  Google Scholar 

  26. Inada M, Matsumoto C, Uematsu S, Akira S, Miyaura C (2006) J Immunol 177:1879

    CAS  Google Scholar 

  27. Ushikubi F, Segi E, Sugimoto Y, Murata T, Matsuoka T, Kobayashi T et al (1998) Nature 395:281. doi:10.1038/26233

    Article  CAS  Google Scholar 

  28. Portanova JP, Zhang Y, Anderson GD, Hauser SD, Masferrer JL, Seibert K et al (1996) J Exp Med 184:883. doi:10.1084/jem.184.3.883

    Article  CAS  Google Scholar 

  29. Cheng Y, Austin SC, Rocca B, Koller BH, Coffman TM, Grosser T, Lawson JA, Fitzgerald GA (2002) Science 296:539. doi:10.1126/science.1068711

    Article  CAS  Google Scholar 

  30. Murakami M, Kudo I (2006) Curr Pharm Des 12:943. doi:10.2174/138161206776055912

    Article  CAS  Google Scholar 

  31. Riendeau D, Aspiotis R, Ethier D, Gareau Y, Grimm EL, Guay J et al (2005) Bioorg Med Chem Lett 15:3352. doi:10.1016/j.bmcl.2005.05.027

    Article  CAS  Google Scholar 

  32. Jachak SM (2007) Curr Opin Investig Drugs 8:411

    CAS  Google Scholar 

  33. Fahmi H (2004) Curr Opin Rheumatol 16:623. doi:10.1097/01.bor.0000129664.81052.8e

    Article  CAS  Google Scholar 

  34. Cheng Y, Wang M, Yu Y, Lawson J, Funk CD, FitzGerald GA (2006) J Clin Invest 116:1391. doi:10.1172/JCI27540

    Article  CAS  Google Scholar 

  35. Juteau H, Wu TY-H, Ducharme Y, Friesen RW, Guiral S, Dufresne L et al (2007) Abstracts of papers, 234th ACS national meeting

  36. Mancini JA, Blood K, Guay J, Gordon R, Claveau D, Chan CC (2001) J Biol Chem 276:4469. doi:10.1074/jbc.M006865200

    Article  CAS  Google Scholar 

  37. Hauel N, Arndt K, Doods H, Klinder K, Pfau R (2008) PCT Int Appl, WO 2008084218 A1

  38. Côté B, Louise B, Brideau C, Claveau D, Ethier D, Frenette R, Gagnon M, Giroux A, Guay J, Guiral S, Mancini J, Martins E, Massé F, Méthot N, Riendeau D, Rubin J, Xu D, Yu H, Ducharme Y, Friesen RW (2007) Bioorg Med Chem Lett 17:6816. doi:10.1016/j.bmcl.2007.10.033

    Article  CAS  Google Scholar 

  39. Ferguson AD, McKeever BM, Xu S, Wisniewski D, Miller DK, Yamin T-T et al (2007) Science 317:510. doi:10.1126/science.1144346

    Article  CAS  Google Scholar 

  40. Ago H, Kanaoka Y, Irikura D, Lam BK, Shimamura T, Austen KF et al (2007) Nature 448:609. doi:10.1038/nature05936

    Article  CAS  Google Scholar 

  41. Molina DM, Wetterholm A, Kohl A, McCarthy AA, Niegowski D, Ohlson E et al (2007) Nature 448:613. doi:10.1038/nature06009

    Article  CAS  Google Scholar 

  42. Holm PJ, Bhakat P, Caroline J, Gyobu N, Mitsuoka K, Fujiyoshi Y et al (2006) J Mol Biol 360:934. doi:10.1016/j.jmb.2006.05.056

    Article  CAS  Google Scholar 

  43. Huang X, Yan W, Gao D, Tong M, Tai H-H, Zhan C-G (2006) Bioorg Med Chem 14:3553. doi:10.1016/j.bmc.2006.01.010

    Article  CAS  Google Scholar 

  44. AbdulHameed MDM, Hamza A, Liu J, Huang X, Zhan C-G (2008) J Chem Inf Model 48:179. doi:10.1021/ci700315c

    Article  CAS  Google Scholar 

  45. Hamza A, AbdulHameed MDM, Zhan C-G (2008) J Phys Chem B 112:7320. doi:10.1021/jp8007688

    Article  CAS  Google Scholar 

  46. Schrödinger, LLC, 101 SW Main Street, Suite 1300, Portland, OR 97204; www.schrodinger.com

  47. Sybyl is a product of Tripos, 1699 South Hanley Road, St. Louis, MO 63144; www.tripos.com

  48. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) Nucleic Acids Res 25:4876. doi:10.1093/nar/25.24.4876

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the scientists at Karolinska Institutet (Dr. H. Hebert, Dr. P.-J. Jakobsson and Dr. R. Morgenstern) for the structural information of mGST-1. The scientists at Schrödinger are acknowledged for their technical supports. The authors are also grateful to Dr. T. Benson for his suggestions on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Xing.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xing, L., Kurumbail, R.G., Frazier, R.B. et al. Homo-timeric structural model of human microsomal prostaglandin E synthase-1 and characterization of its substrate/inhibitor binding interactions. J Comput Aided Mol Des 23, 13–24 (2009). https://doi.org/10.1007/s10822-008-9233-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-008-9233-4

Keywords

Navigation