Skip to main content

Advertisement

Log in

Parameterization of an empirical model for the prediction of n-octanol, alkane and cyclohexane/water as well as brain/blood partition coefficients

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Quantitative information of solvation and transfer free energies is often needed for the understanding of many physicochemical processes, e.g the molecular recognition phenomena, the transport and diffusion processes through biological membranes and the tertiary structure of proteins. Recently, a concept for the localization and quantification of hydrophobicity has been introduced (Jäger et al. J Chem Inf Comput Sci 43:237–247, 2003). This model is based on the assumptions that the overall hydrophobicity can be obtained as a superposition of fragment contributions. To date, all predictive models for the logP have been parameterized for n-octanol/water (logP oct ) solvent while very few models with poor predictive abilities are available for other solvents. In this work, we propose a parameterization of an empirical model for n-octanol/water, alkane/water (logP alk ) and cyclohexane/water (logP cyc ) systems. Comparison of both logP alk and logP cyc with the logarithms of brain/blood ratios (logBB) for a set of structurally diverse compounds revealed a high correlation showing their superiority over the logP oct measure in this context.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Leo A, Hansch C, Elkins D (1971) Chem Rev 6:71

    Google Scholar 

  2. Caron G, Ermondi G (2005) J Med Chem 48:3269

    Article  CAS  Google Scholar 

  3. El Tayar N, Tsai RS, Testa B, Carrupt PA, Leo A (1991) J Pharm Sci 80:590

    Article  CAS  Google Scholar 

  4. Abraham MH, Chadha HS, Whiting GS, Mitchell RC (1994) J Pharm Sci 83:1085

    Article  CAS  Google Scholar 

  5. Pixner P, Heiden W, Merx H, Möller A, Moeckel G, Brickmann J (1994) J Chem Inf Comput Sci 34:1309–1319

    CAS  Google Scholar 

  6. Jäger R, Schmidt F, Schilling B, Brickmann J (2000) J Computer-Aided Mol Des 14:631–646

    Article  Google Scholar 

  7. Jäger R, Kast SM, Brickmann J (2003) J Chem Inf Comput Sci 43:237–247

    Google Scholar 

  8. Goodford PJ (1996) Chemometrics 10:107

    Article  CAS  Google Scholar 

  9. Ghose AK, Crippen GM (1986) J Comp Chem 7:565–577

    Article  CAS  Google Scholar 

  10. Viswanadan VN, Ghose AK, Revankar GR, Robins RK (1989) J Chem Inf Comput Sci 29:163–172

    Google Scholar 

  11. Ghose AK, Viswanadan VN, Wendoloski JJ (1998) J Phys Chem A 102:3762–3772

    Article  CAS  Google Scholar 

  12. No KT, Kim SG, Cho KH, Scheraga HA (1999) Biophys Chem 78:127

    Article  CAS  Google Scholar 

  13. Cruciani G (2006) Molecular interaction fields. Wiley-VCH

  14. Gasteiger J, Rudolph C, Sadowski J (1992) Tetrahedron Comput Meth 3:537

    Article  Google Scholar 

  15. El Tayar N, Tsai RS, Testa B, Carrupt PA, Hansch C, Leo A (1991) J Pharm Sci 80:744

    Article  CAS  Google Scholar 

  16. Ganellin CR (1991) Uses of partition coefficients by brain penetration applied to the design of H2-receptor histamine antagonists. Elsevier

  17. Abraham MH, Chadha HS, Mitchell RC (1994) J Pharm Sci 83:1257

    Article  CAS  Google Scholar 

  18. Chadha HS, Abraham MH, Mitchell RC (1994) Bioorg Med Chem Lett 2511:1085

    Google Scholar 

  19. Young RC, Mitchell RC, Brown TH, Ganellin CR, Griffiths R, Jones M, Rana KK, Saunders D, Smith IR, Sore NE, Wilks TJ (1988) J Med Chem 31:656

    Article  CAS  Google Scholar 

  20. Young RC, Ganellin CR, Griffiths R, Mitchell RC, Parsons ME, Saunders D, Sore NE (1993) J Med Chem 28:201

    Article  CAS  Google Scholar 

  21. Wichmann K, Diedenhofen M, Klamt A (2007) J Chem Inf Model 47:228

    Article  CAS  Google Scholar 

  22. Platts JA, Abraham MH, Zhao YH, Hersey A, Ijaz L, Butima D (2001) Eur J Med Chem 36:719

    Article  CAS  Google Scholar 

  23. Subramanian G, Kitchen DB (2003) J Computer-Aided Mol Des 17:643

    Article  CAS  Google Scholar 

  24. Fu X, Song Z, Liang W (2005) Internet Electron J Mol Des 4:737

    CAS  Google Scholar 

  25. Rishton GM, LaBonte K, Williams AJ, Kassam K, Kolovanov E (2006) Curr Opin Drug Dis Dev 9:303

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Brickmann.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material (99 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zerara, M., Brickmann, J., Kretschmer, R. et al. Parameterization of an empirical model for the prediction of n-octanol, alkane and cyclohexane/water as well as brain/blood partition coefficients. J Comput Aided Mol Des 23, 105–111 (2009). https://doi.org/10.1007/s10822-008-9243-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-008-9243-2

Keywords

Navigation