Skip to main content
Log in

Glycogen synthase kinase-3 inhibition by 3-anilino-4-phenylmaleimides: insights from 3D-QSAR and docking

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Glycogen synthase kinase-3, a serine/threonine kinase, has been implicated in a wide variety of pathological conditions such as diabetes, Alzheimer’s disease, stroke, bipolar disorder, malaria and cancer. Herein we report 3D-QSAR analyses using CoMFA and CoMSIA and molecular docking studies on 3-anilino-4-phenylmaleimides as GSK-3α inhibitors, in order to better understand the mechanism of action and structure-activity relationship of these compounds. Comparison of the active site residues of GSK-3α and GSK-3β isoforms shows that all the key amino acids involved in polar interactions with the maleimides for the β isoform are the same in the α isoform, except that Asp133 in the β isoform is replaced by Glu196 in the α isoform. We prepared a homology model for GSK-3α, and showed that the change from Asp to Glu should not affect maleimide binding significantly. Docking studies revealed the binding poses of three subclasses of these ligands, namely anilino, N-methylanilino and indoline derivatives, within the active site of the β isoform, and helped to explain the difference in their inhibitory activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Hanks SK, Hunter T (1995) FASEB J 9:576

    CAS  Google Scholar 

  2. Ali A, Hoeflich KP, Woodgett JR (2001) Chem Rev 101:2527. doi:10.1021/cr000110o

    Article  CAS  Google Scholar 

  3. Sarabu R, Tilley J (2004) Annu Rep Med Chem 39:41–56

    CAS  Google Scholar 

  4. Wagman AS, Johnson KW, Bussiere DE (2004) Curr Pharm Des 10:1105. doi:10.2174/1381612043452668

    Article  CAS  Google Scholar 

  5. Kunnimalaiyaan M, Vaccaro AM, Ndiaye MA, Chen H (2007) Mol Cancer Ther 6:1151. doi:10.1158/1535-7163.MCT-06-0665

    Article  CAS  Google Scholar 

  6. Manoukian AS, Woodgett JR (2002) Adv Cancer Res 84:203–229. doi:10.1016/S0065-230X(02)84007-6

    Article  CAS  Google Scholar 

  7. Mulholland DJ, Dedhar S, Wu H, Nelson CC (2006) Oncogene 25:329. doi:10.1038/sj.onc.1209020

    Article  CAS  Google Scholar 

  8. Doerig C, Billker O, Pratt D, Endicott J (2005) Biochim Biophys Acta-Proteins Proteomics 1754:132. doi:10.1016/j.bbapap.2005.08.027

    Article  CAS  Google Scholar 

  9. Droucheau E, Primot A, Thomas V, Mattei D, Knockaert M, Richardson C et al (2004) Biochim Biophys Acta-Proteins Proteomics 1700:139. doi:10.1016/j.bbapap.2004.04.005

    Article  CAS  Google Scholar 

  10. Droucheau E, Primot A, Thomas V, Mattei D, Knockaert M, Richardson C et al (2004) Biochim Biophys Acta-Proteins Proteomics 1697:181. doi:10.1016/j.bbapap.2003.11.023

    Article  CAS  Google Scholar 

  11. Kumar R, Singh VP, Baker KM (2007) J Mol Cell Cardiol 42:1. doi:10.1016/j.yjmcc.2006.09.005

    Article  CAS  Google Scholar 

  12. Murphy E, Steenbergen C (2005) Expert Opin Ther Targets 9:447. doi:10.1517/14728222.9.3.447

    Article  CAS  Google Scholar 

  13. Alvarez G, Munoz-Montano JR, Satrustegui J, Avila J, Bogonez E, Diaz-Nido J (2002) Bipolar Disord 4:153. doi:10.1034/j.1399-5618.2002.01150.x

    Article  CAS  Google Scholar 

  14. Bhat RV, Budd SL (2002) Neurosignals 11:251. doi:10.1159/000067423

    Article  CAS  Google Scholar 

  15. Bhat RV, Haeberlein SLB, Avila J (2004) J Neurochem 89:1313. doi:10.1111/j.1471-4159.2004.02422.x

    Article  CAS  Google Scholar 

  16. Huang HC, Klein PS (2006) Curr Drug Targets 7:1389

    CAS  Google Scholar 

  17. Phiel CJ, Wilson CA, Lee VMY, Klein PS (2003) Nature 423:435. doi:10.1038/nature01640

    Article  CAS  Google Scholar 

  18. Gould TD, Zarate CA, Manji HK (2004) J Clin Psychiatry 65:10

    Article  CAS  Google Scholar 

  19. Jope RS, Yuskaitis CJ, Beurel E (2007) Neurochem Res 32:577. doi:10.1007/s11064-006-9128-5

    Article  CAS  Google Scholar 

  20. Aghdam SY, Barger SW (2007) Curr Alzheimer Res 4:21. doi:10.2174/156720507779939832

    Article  CAS  Google Scholar 

  21. Liang MH, Chuang DM (2007) J Biol Chem 282:3904. doi:10.1074/jbc.M605178200

    Article  CAS  Google Scholar 

  22. Sivaprakasam P, Xie AH, Doerksen RJ (2006) Bioorg Med Chem 14:8210. doi:10.1016/j.bmc.2006.09.021

    Article  CAS  Google Scholar 

  23. ter Haar E, Coll JT, Austen DA, Hsiao HM, Swenson L, Jain J (2001) Nat Struct Biol 8:593. doi:10.1038/89624

    Article  CAS  Google Scholar 

  24. Bertrand JA, Thieffine S, Vulpetti A, Cristiani C, Valsasina B, Knapp S et al (2003) J Mol Biol 333:393. doi:10.1016/j.jmb.2003.08.031

    Article  CAS  Google Scholar 

  25. Alonso M, Martinez A (2004) Curr Med Chem 11:755. doi:10.2174/0929867043455738

    Article  CAS  Google Scholar 

  26. Smith DG, Buffet M, Fenwick AE, Haigh D, Ife RJ, Saunders M et al (2001) Bioorg Med Chem Lett 11:635. doi:10.1016/S0960-894X(00)00721-6

    Article  CAS  Google Scholar 

  27. Coghlan MP, Culbert AA, Cross DAE, Corcoran SL, Yates JW, Pearce NJ et al (2000) Chem Biol 7:793. doi:10.1016/S1074-5521(00)00025-9

    Article  CAS  Google Scholar 

  28. Klebe G, Abraham U, Mietzner T (1994) J Med Chem 37:4130. doi:10.1021/jm00050a010

    Article  CAS  Google Scholar 

  29. Hansch C (1964) J Am Chem Soc 86:1616. doi:10.1021/ja01062a035

    Article  CAS  Google Scholar 

  30. Duchowicz PR, Castro EA (2007) Med Chem 3:393. doi:10.2174/157340607781024375

    Article  CAS  Google Scholar 

  31. Dessalew N, Bharatam PV (2006) Chem Biol Drug Des 68:154. doi:10.1111/j.1747-0285.2006.00430.x

    Article  CAS  Google Scholar 

  32. Dessalew N, Bharatam PV (2007) Bioorg Med Chem 15:3728. doi:10.1016/j.bmc.2007.03.048

    Article  CAS  Google Scholar 

  33. Dessalew N, Patel DS, Bharatam PV (2007) J Mol Graph Model 25:885. doi:10.1016/j.jmgm.2006.08.009

    Article  CAS  Google Scholar 

  34. Katritzky AR, Pacureanu LM, Dobchev DA, Fara DC, Duchowicz PR, Karelson M (2006) Bioorg Med Chem 14:4987. doi:10.1016/j.bmc.2006.03.009

    Article  CAS  Google Scholar 

  35. Lescot E, Bureau R, Santos JSD, Rochais C, Lisowski V, Lancelot JC et al (2005) J Chem Inf Model 45:708. doi:10.1021/ci050008y

    Article  CAS  Google Scholar 

  36. Martinez A, Alonso M, Castro A, Dorronsoro I, Gelpi JL, Luque FJ et al (2005) J Med Chem 48:7103. doi:10.1021/jm040895g

    Article  CAS  Google Scholar 

  37. Patel DS, Bharatam PV (2006) J Comput Aided Mol Des 20:55. doi:10.1007/s10822-006-9036-4

    Article  CAS  Google Scholar 

  38. Xiao JF, Guo ZR, Guo YS, Chu FM, Sun PY (2006) Protein Eng Des Sel 19:47. doi:10.1093/protein/gzi074

    Article  CAS  Google Scholar 

  39. Zeng M, Jiang YJ, Zhang B, Zheng KW, Zhang N, Yu QS (2005) Bioorg Med Chem Lett 15:395. doi:10.1016/j.bmcl.2004.10.060

    Article  CAS  Google Scholar 

  40. Zhang N, Jiang YJ, Zou JW, Zhang B, Jin HX, Wang YH et al (2006) Eur J Med Chem 41:373. doi:10.1016/j.ejmech.2005.10.018

    Article  CAS  Google Scholar 

  41. Cramer RD, Patterson DE, Bunce JD (1988) J Am Chem Soc 110:5959. doi:10.1021/ja00226a005

    Article  CAS  Google Scholar 

  42. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA, In, Gaussian, Inc., Wallingford CT, 2004

  43. Golbraikh A, Tropsha A (2002) J Mol Graph Model 20:269. doi:10.1016/S1093-3263(01)00123-1

    Article  CAS  Google Scholar 

  44. Larkin MA, Blackshields G, BN P, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Bioinformatics 23:2947. doi:10.1093/bioinformatics/btm404

    Article  CAS  Google Scholar 

  45. Schrödinger (2008) LLC, New York

  46. Rarey M, Kramer B, Lengauer T, Klebe G (1996) J Mol Biol 261:470. doi:10.1006/jmbi.1996.0477

    Article  CAS  Google Scholar 

  47. Witherington J, Bordas V, Gaiba A, Garton NS, Naylor A, Rawlings AD et al (2003) Bioorg Med Chem Lett 13:3055. doi:10.1016/S0960-894X(03)00645-0

    Article  CAS  Google Scholar 

  48. Witherington J, Bordas V, Gaiba A, Naylor A, Rawlings AD, Slingsby BP et al (2003) Bioorg Med Chem Lett 13:3059. doi:10.1016/S0960-894X(03)00646-2

    Article  CAS  Google Scholar 

  49. Witherington J, Bordas V, Garland SL, Hickey DMB, Ife RJ, Liddle J et al (2003) Bioorg Med Chem Lett 13:1577. doi:10.1016/S0960-894X(03)00134-3

    Article  CAS  Google Scholar 

  50. Witherington J, Bordas V, Haigh D, Hickey DMB, Ife RJ, Rawlings AD et al (2003) Bioorg Med Chem Lett 13:1581. doi:10.1016/S0960-894X(03)00135-5

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Funding from University of Mississippi, including from its Faculty Research Program and from the Office of Research and Sponsored Programs; from the National Center for Zoonotic, Vector-borne, and Enteric Diseases (CK) of the Centers for Disease Control and Prevention (U01/CI000211); from National Science Foundation (EPS-0556308); and from National Institutes of Health’s National Center for Research Resources (P20 RR021929); as well as Laboratory for Applied Drug Design and Synthesis and MCSR computing facilities are greatly appreciated. SP is a Natural Products Neuroscience Fellow. This investigation was conducted in a facility constructed with support from research facilities improvement program C06 RR-14503-01 from the NIH National Center for Research Resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert J. Doerksen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prasanna, S., Daga, P.R., Xie, A. et al. Glycogen synthase kinase-3 inhibition by 3-anilino-4-phenylmaleimides: insights from 3D-QSAR and docking. J Comput Aided Mol Des 23, 113–127 (2009). https://doi.org/10.1007/s10822-008-9244-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-008-9244-1

Keywords

Navigation