Skip to main content
Log in

Molecular modelling evaluation of the cytotoxic activity of podophyllotoxin analogues

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Podophyllotoxin and its structural derivatives, a class of tubulin polymerization inhibitors, have been the objective of numerous studies to prepare better and safer anti-cancer drugs. A library of podophyllotoxin analogues has been designed consisting of 154 analogues. Their molecular interactions and binding affinities with tubulin protein (1SA1) have been studied using the docking-molecular mechanics based on generalized Born/surface area (MM-GBSA) solvation model. Quantitative structure activity relationships were developed between the cytotoxic activity (pIC50) of these compounds and molecular descriptors like docking score and binding free energy. For both the cases the r 2 was in the range of 0.642–0.728 indicating good data fit and r 2cv was in the range of 0.631–0.719 indicating that the predictive capabilities of the models were acceptable. In addition, a linear correlation was observed between the predicted and experimented pIC50 for the validation data set with correlation coefficient r2 of 0.806 and 0.887, suggesting that the docked structure orientation and the interaction energies are reasonable. Low levels of root mean square error for the majority of inhibitors establish the docking and Prime/MM-GBSA based prediction model as an efficient tool for generating more potent and specific inhibitors of tubulin protein by testing rationally designed lead compounds based on podophyllotoxin derivatization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hamel E (1996) Med Res Rev 16:207. doi :10.1002/(SICI)1098-1128(199603)16:2<207::AID-MED4>3.0.CO;2-4

    Article  CAS  Google Scholar 

  2. Brewer CF, Loike JD, Horwitz SB, Sternlicht H, Gensler WJ (1979) J Med Chem 22:215. doi:10.1021/jm00189a001

    Article  CAS  Google Scholar 

  3. Jardine I, Cassady JM, Douras JD (1980) In: Cassady JM, Douras JD (eds) Anticancer agents based on natural product models. Academic Press, New York

  4. Keller-Juslen C, Kuhn M, von Wartburg A, Stahelin H (1971) J Med Chem 14:936. doi:10.1021/jm00292a012

    Article  CAS  Google Scholar 

  5. Weiss SG, Tin-Wa M, Perdue RE Jr, Farnsworth NR (1975) J Pharm Sci 64:95. doi:10.1002/jps.2600640119

    Article  CAS  Google Scholar 

  6. Snyder JA, McIntosh RJ (1976) Annu Rev Biochem 45:699. doi:10.1146/annurev.bi.45.070176.003411

    Article  CAS  Google Scholar 

  7. Margolis RL, Wilson L (1978) Cell 13:1. doi:10.1016/0092-8674(78)90132-0

    Article  CAS  Google Scholar 

  8. Cortese F, Bhattacharyya B, Wolff P (1977) J Biol Chem 252:1134

    CAS  Google Scholar 

  9. David-Pfeuty T, Simon C, Pantaloni D (1979) J Biol Chem 21:2392

    Google Scholar 

  10. Lin CM, Hamel E (1981) J Biol Chem 256:9242

    CAS  Google Scholar 

  11. Whiting DA (1985) Nat Prod Rep 2:191. doi:10.1039/np9850200191

    Article  CAS  Google Scholar 

  12. PJSr Loehrer (1991) Cancer 67:220. doi :10.1002/1097-0142(19910101)67:1+<220::AID-CNCR2820671303>3.0.CO;2-O

    Article  Google Scholar 

  13. Sun L, McPhail AT, Hamel E, Lin CM, Hastie SB, Chang JJ, Lee KH (1993) J Med Chem 36:544. doi:10.1021/jm00057a004

    Article  CAS  Google Scholar 

  14. Yamashita A, Tawa R, Imakura Y, Shibuya M, Lee KH (1994) Mol Pharmacol 47:1920

    CAS  Google Scholar 

  15. Schrodinger LLC (2007) http://www.schrodinger.com

  16. Polak E, Ribiere G (1969) Revue Francaise Inf Rech Oper, Serie Rouge 16-R1:35

  17. San Feliciano A, Miguel del Corral JM, Gordaliza M, Castro MA (1989) Phytochemistry 28:659. doi:10.1016/0031-9422(89)80081-0

    Article  CAS  Google Scholar 

  18. San Feliciano A, Miguel del Corral JM, Gordaliza M, Castro MA (1990) Phytochemistry 29:1335. doi:10.1016/0031-9422(90)85460-W

    Article  CAS  Google Scholar 

  19. San Feliciano A, Gordaliza M, Miguel del Corral JM, Castro MA, García-Grávalos MD, Ruiz- Lázaro P (1993) Planta Med 59:246. doi:10.1055/s-2006-959660

    Article  CAS  Google Scholar 

  20. Gordaliza M, Castro MA, García-Grávalos MD, Ruiz-Lázaro P, Miguel del Corral JM, San Feliciano A (1994) Arch Pharm (Weinheim) 327:175. doi:10.1002/ardp.19943270309

    Article  CAS  Google Scholar 

  21. Castro MA, Gordaliza M, Miguel del Corral JM, San Feliciano A (1994) Org Prep Proced Int 26:539

    Article  CAS  Google Scholar 

  22. Gordaliza M, Miguel del Corral JM, Castro MA, López-Vázquez ML, García PA, San Feliciano A, García-Grávalos MD (1995) Bioorg Med Chem Lett 5:2465. doi:10.1016/0960-894X(95)00432-S

    Article  CAS  Google Scholar 

  23. Miguel del Corral JM, Gordaliza M, Castro MA, Morales LJ, López JL, San Feliciano A (1995) J Nat Prod 58:870. doi:10.1021/np50120a008

    Article  CAS  Google Scholar 

  24. Doré JC, Viel C, Pageot N, Gordaliza M, Castro MA, Miguel del Corral JM, San Feliciano A (1996) J Pharm Belg 51:9

    Google Scholar 

  25. Gordaliza M, Faircloth GT, Castro MA, Miguel del Corral JM, López-Vázquez ML, San Feliciano A (1996) J Med Chem 39:2865. doi:10.1021/jm960023h

    Article  CAS  Google Scholar 

  26. Gordaliza M, Castro MA, Miguel del Corral JM, San Feliciano A, Faircloth GT (1997) Bioorg Med Chem Lett 7:2781. doi:10.1016/S0960-894X(97)10072-5

    Article  CAS  Google Scholar 

  27. Gordaliza M, Miguel del Corral JM, Castro MA, López-Vázquez ML, San Feliciano A, García Grávalos MD, Carpy A (1995) Bioorg Med Chem 3:1203. doi:10.1016/0968-0896(95)00091-T

    Article  CAS  Google Scholar 

  28. Gordaliza M, Castro MA, San Feliciano A, Miguel del Corral JM, López-Vazquez ML, Faircloth GT Patent EP 711765 A1

  29. Miguel del Corral JM, Gordaliza M, Castro MA, García-Grávalos MD, Broughton H, San Feliciano A (1997) Tetrahedron 53:6555. doi:10.1016/S0040-4020(97)00310-4

    Article  Google Scholar 

  30. Hitotsuyanagi Y, Fukuyo M, Tsuda K, Kobayashi M, Ozeki A, Itokawa H, Takeya K (2000) Bioorg Med Chem Lett 10:315. doi:10.1016/S0960-894X(99)00693-9

    Article  CAS  Google Scholar 

  31. Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, Repasky MP, Knoll EH, Shaw DE, Shelley M, Perry JK, Francis P, Shenkin PS (2004) J Med Chem 47:1739. doi:10.1021/jm0306430

    Article  CAS  Google Scholar 

  32. Halgren TA, Murphy RB, Friesner RA, Beard HS, Frye LL, Pollard WT, Banks JL (2004) J Med Chem 47:1750. doi:10.1021/jm030644s

    Article  CAS  Google Scholar 

  33. Lyne PD, Lamb ML, Saeh JC (2006) J Med Chem 49:4805. doi:10.1021/jm060522a

    Article  CAS  Google Scholar 

  34. Haar ET, Rosenkranz HS, Hamel E, Day BW (1996) Bioorg Med Chem 10:1659

    Google Scholar 

  35. Gordaliza M, Castro MA, Miguel del Corral JM, San Feliciano A (2000) Curr Pharm Des 6:1811. doi:10.2174/1381612003398582

    Article  CAS  Google Scholar 

  36. ter Haar E, Rosenkranz HS, Hamel E, Day BW (1996) Bioorg Med Chem 4(10):1659. doi:10.1016/0968-0896(96)00158-7

    Article  CAS  Google Scholar 

  37. Loike JD, Brewer CF, Sternlicht H, Gensler WJ, Horwitz SB (1978) Cancer Res 38:2688

    CAS  Google Scholar 

  38. San Feliciano A, Miguel del Corral JM, Gordaliza M, Castro MA (1991) Phytochemistry 30:3483. doi:10.1016/0031-9422(91)83240-L

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pradeep Kumar Naik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Afroz Alam, M., Naik, P.K. Molecular modelling evaluation of the cytotoxic activity of podophyllotoxin analogues. J Comput Aided Mol Des 23, 209–225 (2009). https://doi.org/10.1007/s10822-008-9252-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-008-9252-1

Keywords

Navigation