Skip to main content
Log in

Molecular docking and QSAR of aplyronine A and analogues: potent inhibitors of actin

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Actin-binding natural products have been identified as a potential basis for the design of cancer therapeutic agents. We report flexible docking and QSAR studies on aplyronine A analogues. Our findings show the macrolide ‘tail’ to be fundamental for the depolymerisation effect of actin-binding macrolides and that it is the tail which forms the initial interaction with the actin rather than the macrocycle, as previously believed. Docking energy scores for the compounds were highly correlated with actin depolymerisation activity. The 3D-QSAR models were predictive, with the best model giving a q 2 value of 0.85 and a r 2 of 0.94. Results from the docking simulations and the interpretation from QSAR “coeff*stdev” contour maps provide insight into the binding mechanism of each analogue and highlight key features that influence depolymerisation activity. The results herein may aid the design of a putative set of analogues that can help produce efficacious and tolerable anti-tumour agents. Finally, using the best QSAR model, we have also made genuine predictions for an independent set of recently reported aplyronine analogues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Sheterline P, Clayton J, Sparrow JC (1998) Actin, 4th edn. Oxford University Press, New York

    Google Scholar 

  2. Carlier MF (1998) Control of actin dynamics. Curr Opin Cell Biol 10:45–51

    Article  CAS  Google Scholar 

  3. Carlier MF, Pantaloni D (1997) Control of actin dynamics in cell motility. J Mol Biol 269:459–467

    Article  CAS  Google Scholar 

  4. Pollard TD, Borisy GG (2003) Cellular motility driven by assembly and disassembly of actin filaments. Cell 112:453–465

    Article  CAS  Google Scholar 

  5. Westphal M, Jungbluth A, Heidecker M, Mühlbauer B, Heizer C, Schwartz JM, Marriott G, Gerisch G (1997) Microfilament dynamics during cell movement and chemotaxis monitored using a GFP-actin fusion protein. Curr Biol 7:176–183

    Article  CAS  Google Scholar 

  6. Pollard TD, Cooper JA (1986) Actin and actin-binding proteins: a critical evaluation of mechanisms and functions. Ann Rev Biochem 55:987–1035

    Article  CAS  Google Scholar 

  7. dos Remedios CG, Chhabra D, Kekic M, Dedova IV, Tsubakihara M, Berry DA, Nosworthy NJ (2003) Actin binding proteins: regulation of cytoskeletal microfilaments. Physiol Rev 83:433–473

    CAS  Google Scholar 

  8. Stossel TP (1989) From signal to pseudopod. How cells control cytoplasmic actin assembly. J Biol Chem 264:18261–18264

    CAS  Google Scholar 

  9. Lambrechts A, Van Troys M, Ampe C (2004) The actin cytoskeleton in normal and pathological cell motility. Int J Biochem Cell Biol 36:1890–1909

    Article  CAS  Google Scholar 

  10. Allingham JS, Klenchin VA, Rayment I (2006) Actin-targeting natural products: structures, properties and mechanisms of action. Cell Mol Life Sci 63:2119–2134

    Article  CAS  Google Scholar 

  11. Button E, Shapland C, Lawson D (1995) Actin, its associated proteins and metastasis. Cell Motil Cytoskelet 30:247–251

    Article  CAS  Google Scholar 

  12. Giganti A, Friederich E (2003) The actin cytoskeleton as a therapeutic target: state of the art and future directions. Prog Cell Cycle Res 5:511–525

    Google Scholar 

  13. Jordan MA, Wilson L (1998) Microtubules and actin filaments: dynamic targets for cancer chemotherapy. Curr Opin Cell Biol 10:123–130

    Article  CAS  Google Scholar 

  14. Yeung KS, Paterson I (2002) Actin-binding marine macrolides: total synthesis and biological importance. Angew Chem Int Ed Engl 41:4632–4653

    Article  CAS  Google Scholar 

  15. Klenchin VA, Allingham JS, King R, Tanaka J, Marriott G, Rayment I (2003) Trisoxazole macrolide toxins mimic the binding of actin-capping proteins to actin. Nat Struct Biol 10:1058–1063

    Article  CAS  Google Scholar 

  16. Spector I, Braet F, Shochet NR, Bubb MR (1999) New anti-actin drugs in the study of the organization and function of the actin cytoskeleton. Microsc Res Tech 47:18–37

    Article  CAS  Google Scholar 

  17. Tanaka J, Yan Y, Choi J, Bai J, Klenchin VA, Rayment I, Marriott G (2003) Biomolecular mimicry in the actin cytoskeleton: mechanisms underlying the cytotoxicity of kabiramide C and related macrolides. Proc Natl Acad Sci USA 100:13851–13856

    Article  CAS  Google Scholar 

  18. Tanaka J, Blain JC, Allingham JS (2008) Actin-binding toxin “tail” wags the dog. Chem Biol 15:205–207

    Article  CAS  Google Scholar 

  19. Hirata K, Muraoka S, Suenaga K, Kuroda T, Kato K, Tanaka H, Yamamoto M, Takata M, Yamada K, Kigoshi H (2006) Structure basis for antitumor effect of aplyronine A. J Mol Biol 356:945–954

    Article  CAS  Google Scholar 

  20. Kigoshi H, Suenaga K, Takagi M, Akao A, Kanematsu K, Kamei N, Okugawa Y, Yamada K (2002) Cytotoxicity and actin-depolymerizing activity of aplyronine A, a potent antitumor macrolide of marine origin, and its analogs. Tetrahedron 58:1075–1102

    Article  CAS  Google Scholar 

  21. D’Auria MV, Paloma LG, Minale L, Zampella A, Verbist JF, Roussakis C, Debitus C, Patissou J (1994) Reidispongiolide A and B, two new potent cytotoxic macrolides from the New Caledonian sponge Reidispongia coerulea. Tetrahedron 50:4829–4834

    Article  Google Scholar 

  22. Allingham JS, Tanaka J, Marriott G, Rayment I (2004) Absolute stereochemistry of ulapualide A. Org Lett 6:597–599

    Article  CAS  Google Scholar 

  23. Roesener JA, Scheuer PJ (1986) Ulapualide A and B, extraordinary antitumor macrolides from nudibranch eggmasses. J Am Chem Soc 108:846–847

    Article  CAS  Google Scholar 

  24. Yamada K, Ojika M, Ishigaki T, Yoshida Y, Ekimoto H, Arakawa M (1993) Aplyronine A, a potent antitumor substance, and the congeners aplyronine B and C isolated from the sea hare Aplysia kurodai. J Am Chem Soc 115:11020–11021

    Article  CAS  Google Scholar 

  25. Suenaga K, Kamei N, Okugawa Y, Takagi M, Akao A, Kigoshi H (1997) Cytotoxicity and actin depolymerizing activity of aplyronine A, a potent antitumor macrolide of marine origin, and the natural and artificial analogs. Bioorg Med Chem Lett 7:269–274

    Article  CAS  Google Scholar 

  26. Saito S, Watabe S, Ozaki H, Kigoshi H, Yamada K, Fusetani N, Karaki H (1996) Novel actin depolymerizing macrolide aplyronine A. J Biochem 120:552–555

    CAS  Google Scholar 

  27. Klebe G, Abraham U, Mietzner T (1994) Molecular similarity indices in a comparative analysis (CoMSIA) of drug molecules to correlate and predict their biological activity. J Med Chem 37:4130–4146

    Article  CAS  Google Scholar 

  28. Burtnick LD, Koepf EK, Grimes J, Jones EY, Stuart DI, McLaughlin PJ, Robinson RC (1997) The crystal structure of plasma gelsolin: implications for actin severing, capping, and nucleation. Cell 90:661–670

    Article  CAS  Google Scholar 

  29. Sun HQ, Yamamoto M, Mejillano M, Yin HL (1999) Gelsolin, a multifunctional actin regulatory protein. J Biol Chem 274:33,179–33182

    CAS  Google Scholar 

  30. Spartan (2008) Wavefunction Inc., Irvine

  31. Halgren T (1996) Merck molecular force field: I–V. J Comp Chem 17:490–641

    Article  CAS  Google Scholar 

  32. Gasteiger J, Marsili M (1980) Iterative partial equalization of orbital electronegativity—a rapid access to atomic charges. Tetrahedron 36:3219–3228

    Article  CAS  Google Scholar 

  33. Sanner MF (1999) Python: a programming language for software integration and development. J Mol Graph Model 17:57–61

    CAS  Google Scholar 

  34. Huey R, Morris GM, Olson AJ, Goodsell DS (2007) A semiemirical free energy force field with charge-based desolvation. J Comput Chem 28:1145–1152

    Article  CAS  Google Scholar 

  35. Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ (1998) Automated docking using a lamarckian genetic algorithm and an empirical binding free energy function. J Comput Chem 19:1639–1662

    Article  CAS  Google Scholar 

  36. Melville JL, Moal IH, Baker-Glenn C, Shaw PE, Pattenden G, Hirst JD (2007) The structural determinants of macrolide-actin binding: in silico insights. Biophys J 92:3862–3867

    Article  CAS  Google Scholar 

  37. Bottoms CA, White TA, Tanner JJ (2006) Exploring structurally conserved solvent sites in protein families. Proteins 64:404–421

    Article  CAS  Google Scholar 

  38. Ogata K, Wodak SJ (2002) Conserved water molecules in MHC class-I molecules and their putative structural and functional roles. Protein Eng 15:697–705

    Article  CAS  Google Scholar 

  39. Roberts BC, Mancera RL (2008) Ligand-protein docking with water molecules. J Chem Inf Model 48:397–408

    Article  CAS  Google Scholar 

  40. Shaltiel S, Cox S, Taylor SS (1998) Conserved water molecules contribute to the extensive network of interactions at the active site of protein kinase A. Proc Natl Acad Sci USA 95:484–491

    Article  CAS  Google Scholar 

  41. Szybki Version 1.1.2 (2008) OpenEye Scientific Software Inc., Santa Fe

  42. Wildman SA, Crippen GM (1999) Prediction of physicochemical parameters by atomic contributions. J Chem Inf Comput Sci 39:868–873

    CAS  Google Scholar 

  43. Hou TJ, Xia K, Zhang W, Xu XJ (2004) ADME evaluation in drug discovery. 4. Prediction of aqueous solubility based on atom contribution approach. J Chem Inf Comput Sci 44:266–275

    CAS  Google Scholar 

  44. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38

    Article  CAS  Google Scholar 

  45. Cole JC, Murray CW, Nissink JW, Taylor RD, Taylor R (2005) Comparing protein-ligand docking programs is difficult. Proteins 60:325–332

    Article  CAS  Google Scholar 

  46. Wada S, Matsunaga S, Saito S, Fusetani N, Watabe S (1998) Actin-binding specificity of marine macrolide toxins, mycalolide B and kabiramide D. J Biochem 123:946–952

    CAS  Google Scholar 

  47. Perkins R, Fang H, Tong W, Welsh WJ (2003) Quantitative structure-activity relationship methods: perspectives on drug discovery and toxicology. Environ Toxicol Chem 22:1666–1679

    Article  CAS  Google Scholar 

  48. Rücker C, Rücker G, Meringer M (2007) y-randomization and its variants in QSPR/QSAR. J Chem Inf Model 47:2345–2357

    Article  Google Scholar 

  49. Wold S, Eriksson L (1995) In: van de Waterbeemd H (ed) Chemometric methods in molecular design. Wiley-VCH, Weinheim, pp 309–318

  50. Yamada K, Ojika M, Kigoshi H, Suenaga K (2009) Aplyronine A, a potent antitumour macrolide of marine origin, and the congeners aplyronines B–H: chemistry and biology. Nat Prod Rep 26:27–43

    Article  CAS  Google Scholar 

  51. Kitamura K, Teruya T, Kuroda T, Kigoshi H, Suenaga K (2009) Synthesis of actin-depolymerizing compounds. Bioorg Med Chem Lett 19:1896–1898

    Article  CAS  Google Scholar 

  52. Perrins RD, Cecere G, Paterson I, Marriott G (2008) Synthetic mimetics of actin-binding macrolides: rational design of actin-targeted drugs. Chem Biol 15:287–294

    Article  CAS  Google Scholar 

  53. Leach AR, Shoichet BK, Peishoff CE (2006) Prediction of protein-ligand interactions. Docking and scoring: successes and gaps. J Med Chem 49:5851–5855

    Article  CAS  Google Scholar 

  54. Warren GL, Andrews CW, Capelli A-M, Clarke B, LaLonde J, Lambert MH, Lindvall M, Nevins N, Semus SF, Senger S, Tedesco G, Wall ID, Woolven JM, Peishoff CE, Head MS (2006) A critical assessment of docking programs and scoring functions. J Med Chem 49:5912–5931

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Craig Bruce for advice and useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan D. Hirst.

Electronic supplementary material

Below is the link to the electronic supplementary material.

PDF (61 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hussain, A., Melville, J.L. & Hirst, J.D. Molecular docking and QSAR of aplyronine A and analogues: potent inhibitors of actin. J Comput Aided Mol Des 24, 1–15 (2010). https://doi.org/10.1007/s10822-009-9307-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-009-9307-y

Keywords

Navigation