Skip to main content
Log in

QM/MM based 3D QSAR models for potent B-Raf inhibitors

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Three dimensional (3D) quantitative structure-activity relationship studies of 37 B-Raf inhibitors, pyrazole-based derivatives, were performed. Based on the co-crystallized compound (PDB ID: 3D4Q), several alignment methods were utilized to derive reliable comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) models. Receptor-guided alignment with quantum mechanics/molecular mechanics (QM/MM) minimization led to the best CoMFA model (q 2 = 0.624, r 2 = 0.959). With the same alignment, a statistically reliable CoMSIA model with steric, H-bond acceptor, and hydrophobic fields was also derived (q 2 = 0.590, r 2 = 0.922). Both models were validated with an external test set, which gave satisfactory predictive r 2 values of 0.926 and 0.878, respectively. Contour maps from CoMFA and CoMSIA models revealed important structural features responsible for increasing biological activity within the active site and explained the correlation between biological activity and receptor-ligand interactions. New fragments were identified as building blocks which can replace R1-3 groups through combinatorial screening methods. By combining these fragments a compound with a high bioactivity level prediction was found. These results can offer useful information for the design of new B-Raf inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wellbrock C, Karasarides M, Marais R (2004) Nat Rev Mol Cell Biol 5:875–885

    Article  CAS  Google Scholar 

  2. Avruch J, Khokhlatchev A, Kyriakis JM et al (2001) Recent Prog Horm Res 56:127–156

    Article  CAS  Google Scholar 

  3. Davies H, Bignell GR, Cox C et al (2002) Nature 417:949–954

    Article  CAS  Google Scholar 

  4. Tuveson DA, Weber BL, Herlyn M (2003) Cancer Cell 4:95–98

    Article  CAS  Google Scholar 

  5. Houben R, Vetter-Kauczok CS, Ortmann S, Rapp UR, Broecker EB, Becker JC (2008) J Invest Dermatol 128:2003–2012

    Article  CAS  Google Scholar 

  6. Hansen JD, Grina J, Newhouse B et al (2008) Bioorg Med Chem Lett 18:4692–4695

    Article  CAS  Google Scholar 

  7. Noble MEM, Endicott JA, Johnson LN (2004) Science 303:1800–1805

    Article  CAS  Google Scholar 

  8. Cramer R III, Patterson D, Bunce J (1988) J Am Chem Soc 110:5959–5967

    Article  CAS  Google Scholar 

  9. Klebe G, Abraham U, Mietzner T (1994) J Med Chem 37:4130–4146

    Article  CAS  Google Scholar 

  10. Klebe G, Abraham U (1999) J Comput Aided Mol Des 13:1–10

    Article  CAS  Google Scholar 

  11. SYBYL 7.3 TI, 1699 South Hanley Rd., St. Louis, Missouri, 63144, USA

  12. LigPrep v2.2, Schrödinger, LLC, New York, NY (2005)

  13. Wold S, Sjöström M, Eriksson L (2001) Chemom Intell Lab Syst 58:109–130

    Article  CAS  Google Scholar 

  14. Kettaneh N, Berglund A, Wold S (2005) Comput Stat Data Anal 48:69–85

    Article  Google Scholar 

  15. Tetko IV, Tanchuk VY, Villa AEP (2001) J Chem Inf Comput Sci 41:1407–1421

    CAS  Google Scholar 

  16. Liao SY, Qian L, Miao TF, Lu HL, Zheng KC (2009) Eur J Med Chem 44:2822–2827

    Article  CAS  Google Scholar 

  17. Chen Y, Li H, Tang W et al (2009) Eur J Med Chem 44:2868–2876

    Article  CAS  Google Scholar 

  18. MacroModel v9.6, Schrödinger, LLC, New York, NY (2008)

  19. Phase v3.0, Schrödinger, LLC, New York, NY (2008)

  20. ConfGen v2.0, Schrödinger, LLC, New York, NY (2008)

  21. Buolamwini JK, Assefa H (2002) J Med Chem 45:841–852

    Article  CAS  Google Scholar 

  22. Patel MR, Dimmock JR, Talele TT (2007) J Chem Inf Model 47:2110–2123

    Article  CAS  Google Scholar 

  23. Philipp DM, Friesner RA (1999) J Comput Chem 20:1468–1494

    Article  CAS  Google Scholar 

  24. Cho AE, Guallar V, Berne BJ, Friesner R (2005) J Comput Chem 26:915–931

    Article  CAS  Google Scholar 

  25. QSite v5.0, Schrödinger, LLC, New York, NY (2008)

Download references

Acknowledgments

We thank Jung Soo Oh of Computational Science Center, Future Fusion Technology Division, at KIST for helpful discussions. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2009-0072095; AEC, JYC) and (2009-0087992; JMH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Art E. Cho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chung, J.Y., Chung, H.W., Cho, S.J. et al. QM/MM based 3D QSAR models for potent B-Raf inhibitors. J Comput Aided Mol Des 24, 385–397 (2010). https://doi.org/10.1007/s10822-010-9337-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-010-9337-5

Keywords

Navigation