Skip to main content

Advertisement

Log in

Structure–activity relationships of diphenyl-ether as protoporphyrinogen oxidase inhibitors: insights from computational simulations

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Protoporphyrinogen oxidase (PPO, EC 1.3.3.4), which has been identified as a significant target for a great family of herbicides with diverse chemical structures, is the last common enzyme responsible for the seventh step in the biosynthetic pathway to heme and chlorophyll. Among the existing PPO inhibitors, diphenyl-ether is the first commercial family of PPO inhibitors and used as agriculture herbicides for decades. Most importantly, diphenyl-ether inhibitors have been found recently to possess the potential in Photodynamic therapy (PDT) to treat cancer. Herein, molecular dynamics simulations, approximate free energy calculations and hydrogen bond energy calculations were integrated together to uncover the structure–activity relationships of this type of PPO inhibitors. The calculated binding free energies are correlated very well with the values derived from the experimental k i data. According to the established computational models and the results of approximate free energy calculation, the substitution effects at different position were rationalized from the view of binding free energy. Some outlier (e.g. LS) in traditional QSAR study can also be explained reasonably. In addition, the hydrogen bond energy calculation and interaction analysis results indicated that the carbonyl oxygen on position-9 and the NO2 group at position-8 are both vital for the electrostatic interaction with Arg98, which made a great contribution to the binding free energy. These insights from computational simulations are not only helpful for understanding the molecular mechanism of PPO-inhibitor interactions, but also beneficial to the future rational design of novel promising PPO inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

PPO:

Protoporphyrinogen oxidase

PDT:

Photodynamic therapy

SAR:

Structure activity relationship

AF:

Acifluorfen

AFM:

Acifluorfen-methyl

HBE:

Hydrogen bond energy

References

  1. Porra RJ, Falk JE (1964) Biochem J 90:69

    CAS  Google Scholar 

  2. Gerald SM (1966) Bot Rev 32:56

    Article  Google Scholar 

  3. Poulson R, Polglase WJ (1975) J Biol Chem 250(4):1269

    CAS  Google Scholar 

  4. Ferreira GC, Andrew TL, Karr SW, Dailey HA (1988) J Biol Chem 263(8):3835

    CAS  Google Scholar 

  5. Lermontova I, Kruse E, Mock HP, Grimm B (1997) Proc Natl Acad Sci U S A 94(16):8895

    Article  CAS  Google Scholar 

  6. Jacobs JM, Jacobs NJ (1984) Arch Biochem Biophys 229(1):312

    Article  CAS  Google Scholar 

  7. Poulson R (1976) J Biol Chem 251(12):3730

    CAS  Google Scholar 

  8. Beale SI (1999) Photosynth Res 60(1):43

    Article  CAS  Google Scholar 

  9. Duke SO, Lydon J, Becerril JM, Sherman TD, Lehnen LP, Matsumoto H (1991) Weed Sci 39(3):456

    Google Scholar 

  10. Duke SO, Nandihalli UB, Lee HJ, Duke MV (1994) ACS Symp Ser 559:191

    Article  CAS  Google Scholar 

  11. Arnould S, Camadro JM (1998) Proc Natl Acad Sci U S A 95(18):10553

    Article  CAS  Google Scholar 

  12. Matringe M, Camadro JM, Labbe P, Scalla R (1989) Biochem J 260:231

    CAS  Google Scholar 

  13. Meazza G, Bettarini F, La Porta P, Piccardi P, Signorini E, Portoso D, Fornara L (2004) Pest Manag Sci 60(12):1178

    Article  CAS  Google Scholar 

  14. Hess FD (2000) Weed Sci 48(2):160

    Article  CAS  Google Scholar 

  15. Scalla R, Matringe M (1994) Rev Weed Sci 6:103

    CAS  Google Scholar 

  16. Jacobs JM, Jacobs NJ, Sherman TD, Duke SO (1991) Plant Physiol 97(1):197

    Article  CAS  Google Scholar 

  17. Wettlaufer SH, Alscher R, Strick C (1985) Plant Physiol 78(2):215

    Article  CAS  Google Scholar 

  18. Duke SO, Rebeiz CA (1994) ACS Symp Ser 559:71

    Google Scholar 

  19. Fingar VH, Wieman TJ, McMahon KS, Haydon PS, Halling BP, Yuhas DA, Winkelman JW (1997) Cancer Res 57(20):4551

    CAS  Google Scholar 

  20. Volker A, Burkhard G (2005) US Patent 20050049228

  21. Boehncke WH, Konig K, Kaufmann R, Scheffold W, Prummer O, Sterry W (1994) Arch Dermatol Res 286(6):300

    Article  CAS  Google Scholar 

  22. Cruess AF, Zlateva G, Pleil AM, Wirostko B (2009) Acta Ophthalmol 87(2):118

    Article  CAS  Google Scholar 

  23. Robertson CA, Evans DH, Abrahamse H (2009) J Photochem Photobiol B 96(1):1

    Article  CAS  Google Scholar 

  24. Moghissi K, Dixon K, Stringer M, Thorpe JA (2009) Photodiagnosis Photodyn Ther 6(3–4):159

    Article  CAS  Google Scholar 

  25. Kennedy JC, Pottier RH, Pross DC (1990) J Photochem Photobiol B 6(1–2):143

    Article  CAS  Google Scholar 

  26. Halling BP, Yuhas DA, Fingar VF, Winkelmann JW (1994) American Chemical Society, Washington, p 280

  27. Shepherd M, Dailey HA (2005) Anal Biochem 344(1):115

    Article  CAS  Google Scholar 

  28. Maneli MH, Corrigall AV, Klump HH, Davids LM, Kirsch RE, Meissner PN (2003) Biochim Biophys Acta 1650(1–2):10

    CAS  Google Scholar 

  29. Nandihalli UB, Duke MV, Duke SO (1992) Pestic Biochem Physiol 43(3):193

    Article  CAS  Google Scholar 

  30. Lee HJ, Duke MV, Birk JH, Yamamoto M, Duke SO (1995) J Agric Food Chem 43(10):2722

    Article  CAS  Google Scholar 

  31. Sumida M, Niwata S, Fukami H, Tanaka T, Wakabayashi K, Boeger P (1995) J Agric Food Chem 43(7):1929

    Article  CAS  Google Scholar 

  32. Koch M, Breithaupt C, Kiefersauer R, Freigang J, Huber R, Messerschmidt A (2004) EMBO J 23(8):1720

    Article  CAS  Google Scholar 

  33. Corradi HR, Corrigall AV, Boix E, Mohan CG, Sturrock ED, Meissner PN, Acharya KR (2006) J Biol Chem 281(50):38625

    Article  CAS  Google Scholar 

  34. Qin X, Sun L, Wen X, Yang X, Tan Y, Jin H, Cao Q, Zhou W, Xi Z, Shen Y (2010) J Struct Biol 170(1):76

    Article  CAS  Google Scholar 

  35. Dailey TA, Dailey HA (1996) Protein Sci 5(1):98

    Article  CAS  Google Scholar 

  36. Puy H, Robreau AM, Rosipal R, Nordmann Y, Deybach JC (1996) Biochem Biophys Res Commun 226(1):226

    Article  CAS  Google Scholar 

  37. Camadro JM, Matringe M, Scalla R, Labbe P (1991) Biochem J 277(Pt 1):17

    CAS  Google Scholar 

  38. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghava-chari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03, revision B-03. Gaussian Inc., Pittsburgh

  39. Singh UC, Kollman PA (1984) J Comput Chem 5(2):129

    Article  CAS  Google Scholar 

  40. Besler BH, Merz KM, Kollman PA (1990) J Comput Chem 11(4):431

    Article  CAS  Google Scholar 

  41. Case DA, Darden TA, Cheatham TE, Simmerling CL, Wang J, Duke RE, Luo R, Merz KM, Wang B, Pearlman DA, Crowley M, Brozell S, Tsui V, Gohlke H, Mongan J, Hornak V, Cui G, Beroza P, Schafmeister C, Caldwell JW, Ross WS, Kollman PA (2004) AMBER 8. University of California, San Francisco

    Google Scholar 

  42. Sybyl7.1. Tripos Inc., St. Louis

  43. Wang J, Cieplak P, Kollman PA (2000) J Comput Chem 21(12):1049

    Article  CAS  Google Scholar 

  44. Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) J Comput Chem 25(9):1157

    Article  CAS  Google Scholar 

  45. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) J Chem Phys 79(2):926

    Article  CAS  Google Scholar 

  46. Darden T, York D, Pedersen L (1993) J Chem Phys 98(12):10089

    Article  CAS  Google Scholar 

  47. Essmann U, Perera L, Berkowitz ML (1995) J Chem Phys 103(19):8577

    Article  CAS  Google Scholar 

  48. Ryckaert JP, Ciccotti G, Berendsen HJC (1977) J Comput Phys 23(3):327

    Article  CAS  Google Scholar 

  49. Kollman PA, Massova I, Reyes C, Kuhn B, Huo S, Chong L, Lee M, Lee T, Duan Y, Wang W, Donini O, Cieplak P, Srinivasan J, Case DA, Cheatham TE 3rd (2000) Acc Chem Res 33(12):889

    Article  CAS  Google Scholar 

  50. Gilson MK, Sharp KA, Honig BH (1987) J Comput Chem 9(4):327

    Article  Google Scholar 

  51. Sitkoff D, Sharp KA, Honig B (1994) J Phys Chem 98(7):1978

    Article  CAS  Google Scholar 

  52. Case DA, Cheatham TE 3rd, Darden T, Gohlke H, Luo R, Merz KM Jr, Onufriev A, Simmerling C, Wang B, Woods RJ (2005) J Comput Chem 26(16):1668

    Article  CAS  Google Scholar 

  53. Hao G-F, Yang G-F (2010) PLoS ONE 5(5):e10742

    Article  Google Scholar 

  54. Hao GF, Yang GF, Zhan CG (2010) J Phys Chem B 114(29):9663

    Article  CAS  Google Scholar 

  55. Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ (1998) J Comput Chem 19(14):1639

    Article  CAS  Google Scholar 

  56. Hao GF, Zhu XL, Ji FQ, Zhang L, Yang GF, Zhan CG (2009) J Phys Chem B 113(14):4865

    Article  CAS  Google Scholar 

  57. InsightII. Molecular Simulation, Inc., San Diego

  58. Moritsugu K, Njunda BM, Smith JC (2010) J Phys Chem B 114(3):1479

    Article  CAS  Google Scholar 

  59. Durst GL (1998) Quant Struct-Act Relat 17:419

    Article  CAS  Google Scholar 

  60. Davan FE, Allen SN (2000) Pest Manag Sci 56(8):717

    Article  Google Scholar 

Download references

Acknowledgments

The research was supported in part by the National Basic Research Program of China (No. 2010CB126103), the NSFC (No. 20925206 and 20932005) and the PCSIRT (No. IRT0953).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guang-Fu Yang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 29 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hao, GF., Tan, Y., Yu, NX. et al. Structure–activity relationships of diphenyl-ether as protoporphyrinogen oxidase inhibitors: insights from computational simulations. J Comput Aided Mol Des 25, 213–222 (2011). https://doi.org/10.1007/s10822-011-9412-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-011-9412-6

Keywords

Navigation