Skip to main content
Log in

Machine learning study for the prediction of transdermal peptide

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

In order to develop a computational method to rapidly evaluate transdermal peptides, we report approaches for predicting the transdermal activity of peptides on the basis of peptide sequence information using Artificial Neural Network (ANN), Partial Least Squares (PLS) and Support Vector Machine (SVM). We identified 269 transdermal peptides by the phage display technique and use them as the positive controls to develop and test machine learning models. Combinations of three descriptors with neural network architectures, the number of latent variables and the kernel functions are tried in training to make appropriate predictions. The capacity of models is evaluated by means of statistical indicators including sensitivity, specificity, and the area under the receiver operating characteristic curve (ROC score). In the ROC score-based comparison, three methods proved capable of providing a reasonable prediction of transdermal peptide. The best result is obtained by SVM model with a radial basis function and VHSE descriptors. The results indicate that it is possible to discriminate between transdermal peptides and random sequences using our models. We anticipate that our models will be applicable to prediction of transdermal peptide for large peptide database for facilitating efficient transdermal drug delivery through intact skin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Prausnitz MR, Mitragotri S, Langer R (2004) Current status and future potential of transdermal drug delivery. Nat Rev Drug Discov 3:115–124

    Article  CAS  Google Scholar 

  2. Thomas BJ, Finnin BC (2004) The transdermal revolution. Drug Discov Today 9:697–703

    Article  CAS  Google Scholar 

  3. Chen Y, Shen Y, Guo X, Zhang C, Yang W, Ma M, Liu S, Zhang M, Wen LP (2006) Transdermal protein delivery by a coadministered peptide identified via phage display. Nat Biotechnol 24:455–460

    Article  CAS  Google Scholar 

  4. Benson HA (2005) Transdermal drug delivery: penetration enhancement techniques. Curr Drug Deliv 2:23–33

    Article  CAS  Google Scholar 

  5. Madison KC (2003) Barrier function of the skin: “la raison d’etre” of the epidermis. J Invest Dermatol 121:231–241

    Article  CAS  Google Scholar 

  6. Lopes LB, Brophy CM, Furnish E, Flynn CR, Sparks O, Komalavilas P, Joshi L, Panitch A, Bentley MV (2005) Comparative study of the skin penetration of protein transduction domains and a conjugated peptide. Pharm Res 22:750–757

    Article  CAS  Google Scholar 

  7. Goodman M, Barry BW (1989) Lipid-protein-partitioning (LPP) theory of skin enhancer activity: finite dose technique. Int J Pharm 57:29–40

    Article  CAS  Google Scholar 

  8. Rigg PC, Barry BW (1990) Shed snake skin and hairless mouse skin as model membranes for human skin during permeation studies. J Invest Dermatol 94:235–240

    Article  CAS  Google Scholar 

  9. Takahashi K, Sakano H, Numata N, Kuroda S, Mizuno N (2002) Effect of fatty acid diesters on permeation of anti-inflammatory drugs through rat skin. Drug Dev Ind Pharm 2:1285–1294

    Article  Google Scholar 

  10. Barry BW (2004) Breaching the skin’s barrier to drugs. Nat Biotechnol 22:165–167

    Article  CAS  Google Scholar 

  11. Karande P, Jain A, Mitragotri S (2004) Discovery of transdermal penetration enhancers by high-throughput screening. Nat Biotechnol 22:192–197

    Article  CAS  Google Scholar 

  12. Prausnitz MR, Bose VG, Langer R, Weaver JC (1993) Electroporation of mammalian skin: a mechanism to enhance transdermal drug delivery. Proc Natl Acad Sci USA 90:10504–10508

    Article  CAS  Google Scholar 

  13. Pillai O, Nair V, Panchagnula R (2004) Transdermal iontophoresis of insulin: IV. Influence of chemical enhancers. Int J Pharm 269:109–120

    Article  CAS  Google Scholar 

  14. Kalia YN, Naik A, Garrison J, Guy RH (2004) Iontophoretic drug delivery. Adv Drug Deliv Re 56:619–658

    Article  CAS  Google Scholar 

  15. Lavon I, Kost J (2004) Ultrasound and transdermal drug delivery. Drug Discov Today 9:670–676

    Article  CAS  Google Scholar 

  16. McAllister DV, Allen MG, Prausnitz MR (2000) Microfabricated microneedles for gene and drug delivery. Annu Rev Biomed Eng 2:289–313

    Article  CAS  Google Scholar 

  17. Prausnitz MR (2004) Microneedles for transdermal drug delivery. Adv Drug Deliv Re 56:581–587

    Article  CAS  Google Scholar 

  18. Rajotte D, Ruoslahti E (1999) Membrane dipeptidase is the receptor for a lung-targeting peptide identified by in vivo phage display. J Biol Chem 274:11593–11598

    Article  CAS  Google Scholar 

  19. Pasqualini R, Koivunen E, Kain R, Lahdenranta J, Sakamoto M, Stryhn A, Ashmun RA, Shapiro LH, Arap W, Ruoslahti E (2000) Aminopeptidase N is a receptor for tumor-homing peptides and a target for inhibiting angiogenesis. Cancer Res 60:722–727

    CAS  Google Scholar 

  20. Trepel M, Arap W, Pasqualini R (2002) In vivo phage display and vascular heterogeneity: implications for targeted medicine. Curr Opin Chem Biol 6:399–404

    Article  CAS  Google Scholar 

  21. Duerr DM, White SJ, Schluesener HJ (2004) Identification of peptide sequences that induce the transport of phage across the gastrointestinal mucosal barrier. J Virol Methods 116:177–180

    Article  CAS  Google Scholar 

  22. Kang SK, Woo JH, Kim MK, Woo SS, Choi JH, Lee HG, Lee NK, Choi YJ (2008) Identification of a peptide sequence that improves transport of macromolecules across the intestinal mucosal barrier targeting goblet cells. J Biotechnol 135:210–216

    Article  CAS  Google Scholar 

  23. McCaldon P, Argos P (1988) Proteins 4:99–122

    Article  CAS  Google Scholar 

  24. Mei H, Lian ZH, Zhou Y, Li SZ (2005) A new set of amino acid descriptors and its application in peptide QSARs. Biopolymer (Peptide Science) 80:775–786

    Article  CAS  Google Scholar 

  25. Hellberg S, Sjöström M, Skagerberg B, Wold S (1987) Peptide quantitative structure-activity relationships, a multivariate approach. J Med Chem 30:1126–1135

    Article  CAS  Google Scholar 

  26. Sandberg M, Eriksson L, Jonsson J, Sjöströ M, Wold S (1998) New chemical descriptors relevant for the design of biologically active peptides. A multivariate characterization of 87 amino acids. J Med Chem 41:2481–2491

    Article  CAS  Google Scholar 

  27. The R Project for Statistical Computing (2009) http://www.r-project.org/. Version R 2.10.1

  28. Jung E, Kim J, Choi SH, Kim M, Rhee H, Shin JM, Choi K, Kang SK, Lee NK, Choi YJ, Jung DH (2010) Artificial neural network study on organ-targeting peptides. J Comput Aided Mol Des 24:49–56

    Article  CAS  Google Scholar 

  29. Venables WN, Ripley BD (2002) Modern applied statistics with S, Fourth Edition edn. Springer, Berlin

    Google Scholar 

  30. Pipeline Pilot 7.5. http://accelrys.com/products/pipeline-pilot/

  31. Hanley JA, McNeil BJ (1982) The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143:29–36

    CAS  Google Scholar 

  32. Springer C, Adalsteinsson H, Young MM, Kegelmeyer PW, Roe DC (2005) PostDock: a structural, empirical approach to scoring protein ligand complexes. J Med Chem 48:6821–6831

    Article  CAS  Google Scholar 

  33. Jung E, Kim J, Kim M, Jung DH, Rhee H, Shin JM, Choi K, Kang SK, Kim MK, Yun CH, Choi YJ, Choi SH (2007) Artificial neural network models for prediction of intestinal permeability of oligopeptides. BMC Bioinformatics 8:245

    Article  Google Scholar 

  34. Natt NK, Kaur H, Raghava GP (2004) Prediction of transmembrane regions of beta-barrel proteins using ANN- and SVM-based methods. Proteins: Str, Funct, Bioinf 56:11–18

    Article  CAS  Google Scholar 

  35. Bhasin M, Raghava GP (2004) Prediction of CTL epitopes using QM, SVM and ANN techniques. Vaccine 22:3195–3204

    Article  CAS  Google Scholar 

  36. Wang D, Larder B, Revell A, Montaner J, Harrigan R, De Wolf F, Lange J, Wegner S, Ruiz L, Pérez-Elías MJ, Emery S, Gatell J, D’Arminio Monforte A, Torti C, Zazzi M, Lane C (2009) A comparison of three computational modelling methods for the prediction of virological response to combination HIV therapy. Artif Intell Med 47:63–74

    Article  Google Scholar 

  37. Bhasin M, Raghava GP (2004) SVM-based method for predicting HLADRB1*0401 binding peptides in an antigen sequence. Bioinformation 20:421–423

    Article  CAS  Google Scholar 

  38. Burden FR, Winkler DA (2005) Predictive Bayesian neural network models of MHC class II peptide binding. J Mol Graph Model 23:481–489

    Article  CAS  Google Scholar 

  39. Ivanciuc O, Braun W (2007) Robust quantitative modeling of peptide binding affinities for MHC molecules using physical-chemical descriptors. Protein Pept Lett 14:903–916

    Article  CAS  Google Scholar 

  40. Zhang GL, Bozic I, Kwoh CK, August JT, Brusic V (2007) Prediction of supertype-specific HLA class I binding peptides using support vector machines. J Immunol Methods 320:143–154

    Article  CAS  Google Scholar 

  41. Fjell CD, Jenssen H, Hilpert K, Cheung WA, Panté N, Hancock RE, Cherkasov A (2009) Identification of novel antibacterial peptides by chemoinformatics and machine learning. J Med Chem 52:2006–2015

    Article  CAS  Google Scholar 

  42. Essler M, Ruoslahti E (2002) Molecular specialization of breast vasculature: a breast-homing phage-displayed peptide binds to aminopeptidase P in breast vasculature. Proc Natl Acad Sci USA 99:2252–2257

    Article  CAS  Google Scholar 

  43. Kolonin MG, Saha PK, Chan L, Pasqualini R, Arap W (2004) Reversal of obesity by targeted ablation of adipose tissue. Nat Med 10:625–632

    Article  CAS  Google Scholar 

  44. Lee NK, Kim M, Choi JH, Kim EB, Lee HG, Kang SK, Choi YJ (2010) Identification of a peptide sequence targeting mammary vasculature via RPLP0 during lactation. Peptides 31:2247–2254

    Article  CAS  Google Scholar 

  45. Wan XM, Chen YP, Xu WR, Yang WJ, Wen LP (2009) Identification of nose-to-brain homing peptide through phage display. Peptides 30:343–350

    Article  CAS  Google Scholar 

  46. Loan Honeywell-Nguyen P, Bouwstra JA (2005) Vesicles as a tool for transdermal and dermal delivery. Drug Discovery Today: Technol 2:67–74

    Article  Google Scholar 

  47. Elsayed MM, Abdallah OY, Naggar VF, Khalafallah NM (2007) Lipid vesicles for skin delivery of drugs: reviewing three decades of research. Int J Pharm 332:1–16

    Article  CAS  Google Scholar 

  48. Mehnert W, Mäder K (2001) Solid lipid nanoparticles: production, characterization and applications. Adv Drug Deliv Rev 47:165–196

    Article  CAS  Google Scholar 

  49. Patlolla RR, Chougule M, Patel AR, Jackson T, Tata PN, Singh M (2010) Formulation, characterization and pulmonary deposition of nebulized celecoxib encapsulated nanostructured lipid carriers. J Control Release 144:233–241

    Article  CAS  Google Scholar 

  50. Paños I, Acosta N, Heras A (2008) New drug delivery systems based on chitosan. Curr Drug Discov Technol 5:333–341

    Article  Google Scholar 

  51. Rothbard JB, Garlington S, Lin Q, Kirschberg T, Kreider E, McGrane PL, Wender PA, Khavari PA (2000) Conjugation of arginine oligomers to cyclosporin A facilitates topical delivery and inhibition of inflammation. Nat Med 6:1253–1257

    Article  CAS  Google Scholar 

  52. Patlolla RR, Desai PR, Belay K, Singh MS (2010) Translocation of cell penetrating peptide engrafted nanoparticles across skin layers. Biomaterials 31:5598–5607

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Korea Science and Engineering Foundation (KOSEF) NRL Program grant funded by the Korea government (MEST) (No. R0A-2008-000-20024-1). We thank Accelrys Korea for the support of SciTegic Pipeline Pilot software.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Hyun Jung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jung, E., Choi, SH., Lee, N.K. et al. Machine learning study for the prediction of transdermal peptide. J Comput Aided Mol Des 25, 339–347 (2011). https://doi.org/10.1007/s10822-011-9424-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-011-9424-2

Keywords

Navigation