Skip to main content

Advertisement

Log in

Active site similarity between human and Plasmodium falciparum phosphodiesterases: considerations for antimalarial drug design

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

The similarity between Plasmodium falciparum phosphodiesterase enzymes (PfPDEs) and their human counterparts have been examined and human PDE9A was found to be a suitable template for the construction of homology models for each of the four PfPDE isoforms. In contrast, the architecture of the active sites of each model was most similar to human PDE1. Molecular docking was able to model cyclic guanosine monophosphate (cGMP) substrate binding in each case but a docking mode supporting cyclic adenosine monophosphate (cAMP) binding could not be found. Anticipating the potential of PfPDE inhibitors as anti-malarial drugs, a range of reported PDE inhibitors including zaprinast and sildenafil were docked into the model of PfPDEα. The results were consistent with their reported biological activities, and the potential of PDE1/9 inhibitor analogues was also supported by docking.

Graphical Abstract

 

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Miller LH, Baruch DI, Marsh K, Doumbo OK (2002) Nature 415:673–679

    Article  CAS  Google Scholar 

  2. Greenwood BM, Bojang K, Whitty CJ, Targett GA (2005) Lancet 365:1487–1498

    Article  CAS  Google Scholar 

  3. Heddini A (2002) Int J Parasitol 32:1587–1598

    Article  CAS  Google Scholar 

  4. Chiang PK, Bujnicki JM, Su X, Lanar DE (2006) Curr Mol Med 6:309–326

    Article  CAS  Google Scholar 

  5. Woster PM (2003) New therapies for malaria. In: Doherty AM (ed) Annual reports in medicinal chemistry, vol 38. Elsevier, Amsterdam, pp 203–212

    Google Scholar 

  6. Ridley RG (2002) Nature 415:686–693

    Article  CAS  Google Scholar 

  7. Kappe SH, Vaughan AM, Boddey JA, Cowman AF (2010) Science 328:862–866

    Article  CAS  Google Scholar 

  8. Wentzinger L, Bopp S, Tenor H, Klar J, Brun R, Beck HP, Seebeck T (2008) Int J Parasitol 38:1625–1637

    Article  CAS  Google Scholar 

  9. Lugnier C (2006) Pharmacol Ther 109:366–398

    Article  CAS  Google Scholar 

  10. Conti M, Beavo J (2007) Ann Rev Biochem 76:481–511

    Article  CAS  Google Scholar 

  11. Jeon YH, Heo YS, Kim CM, Hyun YL, Lee TG, Ro S, Cho JM (2005) Cell Mol Life Sci 62:1198–1220

    Article  CAS  Google Scholar 

  12. Baker DA, Kelly JM (2004) Trends Parasitol 20:227–232

    Article  CAS  Google Scholar 

  13. Gardner MJ, Hall N, Fung E, White O, Berriman M, Hyman RW, Carlton JM, Pain A, Nelson KE, Bowman S, Paulsen IT, James K, Eisen JA, Rutherford K, Salzberg SL, Craig A, Kyes S, Chan MS, Nene V, Shallom SJ, Suh B, Peterson J, Angiuoli S, Pertea M, Allen J, Selengut J, Haft D, Mather MW, Vaidya AB, Martin DM, Fairlamb AH, Fraunholz MJ, Roos DS, Ralph SA, McFadden GI, Cummings LM, Subramanian GM, Mungall C, Venter JC, Carucci DJ, Hoffman SL, Newbold C, Davis RW, Fraser CM, Barrell B (2002) Nature 419:498–511

    Article  CAS  Google Scholar 

  14. Beavo JA (1995) Physiol Rev 75:725–748

    CAS  Google Scholar 

  15. Taylor CJ, McRobert L, Baker DA (2008) Mol Microbiol 69:110–118

    Article  CAS  Google Scholar 

  16. Moon RW, Taylor CJ, Bex C, Schepers R, Goulding D, Janse CJ, Waters AP, Baker DA, Billker O (2009) PLoS Pathog 5(9):e1000599

    Article  Google Scholar 

  17. McRobert L, Taylor CJ, Deng W, Fivelman QL, Cummings RM, Polley SD, Billker O, Baker DA (2008) PLoS Biol 6(6):e139

    Article  Google Scholar 

  18. Taylor HM, McRobert L, Grainger M, Sicard A, Dluzewski AR, Hopp CS, Holder AA, Baker DA (2010) Eukaryot Cell 9:37–45

    Article  CAS  Google Scholar 

  19. Beraldo FH, Almeida FM, da Silva AM, Garcia CR (2005) J Cell Biol 170:551–557

    Article  CAS  Google Scholar 

  20. Young JA, Fivelman QL, Blair PL, de la Vega P, Le Roch KG, Zhou Y, Carucci DJ, Baker DA, Winzeler EA (2005) Mol Biochem Parasitol 143:67–79

    Article  CAS  Google Scholar 

  21. Yuasa K, Mi-Ichi F, Kobayashi T, Yamanouchi M, Kotera J, Kita K, Omori K (2005) Biochem J 392:221–229

    Article  CAS  Google Scholar 

  22. Beghyn TB, Charton J, Leroux F, Laconde G, Bourin A, Cos P, Maes L, Deprez B (2011) J Med Chem 54:3222–3240

    Article  CAS  Google Scholar 

  23. Ke H, Wang H (2007) Curr Top Med Chem 7:391–403

    Article  CAS  Google Scholar 

  24. Sung BJ, Hwang KY, Jeon YH, Lee JI, Heo YS, Kim JH, Moon J, Yoon JM, Hyun YL, Kim E, Eum SJ, Park SY, Lee JO, Lee TG, Ro S, Cho JM (2003) Nature 425:98–102

    Article  CAS  Google Scholar 

  25. Zhang KY, Card GL, Suzuki Y, Artis DR, Fong D, Gillette S, Hsieh D, Neiman J, West BL, Zhang C, Milburn MV, Kim SH, Schlessinger J, Bollag G (2004) Mol Cell 15:279–286

    Article  CAS  Google Scholar 

  26. Fry M, Beesley J (1991) Parasitol Today 102:17–26

    Google Scholar 

  27. Chenna R, Sugawara H, Koike T, Lopez R, Gibson TJ, Higgins DG, Thompson JD (2003) Nucleic Acids Res 31:3497–3500

    Article  CAS  Google Scholar 

  28. Manallack DT, Hughes RA, Thompson PE (2005) J Med Chem 48:3449–3462

    Article  CAS  Google Scholar 

  29. Liu S, Mansour MN, Dillman KS, Perez JR, Danley DE, Aeed PA, Simons SP, Lemotte PK, Menniti FS (2008) Proc Natl Acad Sci USA 105:13309–13314

    Article  CAS  Google Scholar 

  30. Chen VB, Arendall WB 3rd, Headd JJ, Keedy DA, Immormino RM, Kapral GJ, Murray LW, Richardson JS, Richardson DC (2010) Acta Crystallogr D Biol Crystallogr 66(Pt 1):12–21

    Article  Google Scholar 

  31. De Ninno MP, Andrews M, Bell AS, Chen Y, Eller-Zarbo C, Eshelby N, Etienne JB, Moore DE, Palmer MJ, Visser MS, Yu LJ, Zavadoski WJ, Gibbs ME (2009) Bioorg Med Chem Lett 19:2537–2541

    Article  Google Scholar 

  32. Wentzinger L, Seebeck T (2006) Protozoal phosphodiesterases. In: Beavo J (ed) Cyclic nucleotide phosphodiesterases in health and disease. CRC Press, Boca Raton, Florida, pp 275–301

  33. Wang H, Yan Z, Geng J, Kunz S, Seebeck T, Ke H (2007) Mol Microbiol 66:1029–1038

    Article  CAS  Google Scholar 

  34. Xu RX, Hassell AM, Vanderwall D, Lambert MH, Holmes WD, Luther MA, Rocque WJ, Milburn MV, Zhao Y, Ke H, Nolte RT (2000) Science 288:1822–1825

    Article  CAS  Google Scholar 

  35. Read LK, Mikkelsen RB (1991) J Parasitol 77:346–352

    Article  CAS  Google Scholar 

  36. Saeki T, Adachi H, Takase Y, Yoshitake S, Souda S, Saito I (1995) J Pharmacol Exp Ther 272:825–831

    CAS  Google Scholar 

  37. Card GL, England BP, Suzuki Y, Fong D, Powell B, Lee B, Luu C, Tabrizizad M, Gillette S, Ibrahim PN, Artis DR, Bollag G, Milburn MV, Kim SH, Schlessinger J, Zhang KY (2004) Structure 12:2237–2247

    Article  Google Scholar 

  38. Verhoest PR, Chapin DS, Corman M, Fonseca K, Harms JF, Hou X, Marr ES, Menniti FS, Nelson F, O’Connor R, Pandit J, Proulx-Lafrance C, Schmidt AW, Schmidt CJ, Suiciak JA, Liras S (2009) J Med Chem 52:5188–5196

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr Paul Gilson for his helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David T. Manallack.

Additional information

Dedicated to the memory of Kate Burt.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Howard, B.L., Thompson, P.E. & Manallack, D.T. Active site similarity between human and Plasmodium falciparum phosphodiesterases: considerations for antimalarial drug design. J Comput Aided Mol Des 25, 753–762 (2011). https://doi.org/10.1007/s10822-011-9458-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-011-9458-5

Keywords

Navigation