Skip to main content

Advertisement

Log in

Molecular simulation methods in drug discovery: a prospective outlook

  • Perspective
  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Over the last decades, molecular simulations have spread through the drug discovery arena. This trend is expected to continue in the foreseeable future thanks to increased performance and the positive impact they can exert on productivity. In this article we highlight three aspects of molecular modelling for which we expect significant improvements over the next 25 years. Increased computational resources, faster algorithms and novel methods to sample rare events will provide a better handle on target flexibility and its relation with ligand binding. More accurate target druggability predictions will improve the success, but also broaden the scope of target-based drug discovery strategies. Finally, the use of higher levels of theory will increase the accuracy of protein–ligand binding affinity predictions, resulting in better hit identification success rates as well as more efficient lead optimization processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cramer RD III, Patterson DE, Bunce JD (1988) J Am Chem Soc 110:5959–5967

    Article  CAS  Google Scholar 

  2. Jorgensen WL (2004) Science 303:1813–1818

    Article  CAS  Google Scholar 

  3. Stone JE, Philips JC, Freddolino PL, Hardy DJ, Trabuco LG, Schulten K (2007) J Comput Chem 28:2618–2640

    Article  CAS  Google Scholar 

  4. Schmid N, Bötschi M, van Gunsteren WF (2010) J Comput Chem 31:1636–1643

    CAS  Google Scholar 

  5. Service RF (2004) Science 303:1796–1799

    Article  Google Scholar 

  6. Maryanoff BE (2004) J Med Chem 47:769–787

    Article  CAS  Google Scholar 

  7. Maryanoff BE (2009) J Med Chem 52:3431–3440

    Article  CAS  Google Scholar 

  8. Csermely P, Palotai R, Nussinov R (2010) Trends Biochem Sci 35:539–546

    Article  CAS  Google Scholar 

  9. Spyrakis F, Bidon-Chanal A, Barril X, Luque FJ (2011) Curr Topics Med Chem 11:192–210

    CAS  Google Scholar 

  10. Billas IML, Iwema T, Garnier J-M, Mitschler A, Rochel N, Moras D (2003) Nature 426:91–96

    Article  CAS  Google Scholar 

  11. Kua J, Zhang Y, McCammon JA (2002) J Am Chem Soc 124:8260–8267

    Article  CAS  Google Scholar 

  12. Alonso H, Bliznyuk AA, Gready JE (2006) Med Res Rev 26:531–568

    Article  CAS  Google Scholar 

  13. Hamelberg D, Mongan J, McCammon JA (2004) J Chem Phys 120:11919–11929

    Article  CAS  Google Scholar 

  14. Liu P, Kim B, Friesner RA, Berne BJ (2005) Proc Natl Acad Sci USA 102:13749–13754

    Article  CAS  Google Scholar 

  15. Cheng X, Cui G, Hornak V, Simmerling C (2005) J Phys Chem B 109:8220–8230

    Article  CAS  Google Scholar 

  16. Tozzini V (2005) Curr Opin Struct Biol 15:144–150

    Article  CAS  Google Scholar 

  17. Lei H, Duan Y (2007) Curr Opin Struct Biol 17:187–191

    Article  CAS  Google Scholar 

  18. Gervasio FL, Laio A, Parrinello M (2005) J Am Chem Soc 127:2600–2607

    Google Scholar 

  19. Colizzi F, Perozzo R, Scapozza L, Recanatini M, Cavalli A (2010) J Am Chem Soc 132:7361–7371

    Article  CAS  Google Scholar 

  20. Biarnés X, Bongarzone S, Vargiu AV, Carloni P, Ruggerone P (2011) J Comput Aided Mol Des 25:395–402

    Article  Google Scholar 

  21. Macarron R (2006) Drug Discov Today 11:277–279

    Article  Google Scholar 

  22. Russ AP, Lampel S (2005) Drug Discov Today 10:1607–1610

    Article  Google Scholar 

  23. Overington JP, Al-Lazikani B, Hopkins AL (2006) Nat Rev Drug Discov 5:993–996

    Article  CAS  Google Scholar 

  24. Hajduk PJ, Huth JR, Fesik SW (2005) J Med Chem 48:2518–2525

    Article  CAS  Google Scholar 

  25. Cheng AC, Coleman RG, Smyth KT, Cao Q, Soulard P, Caffrey DR, Salzberg AC, Huang ES (2007) Nat Biotechnol 25:71–75

    Article  Google Scholar 

  26. Schmidtke P, Barril X (2010) J Med Chem 53:5858–5867

    Article  CAS  Google Scholar 

  27. Gao J, Bosco DA, Powers ET, Kelly JW (2009) Nat Struct Mol Biol 16:684–690

    Article  CAS  Google Scholar 

  28. Schmidtke P, Luque FJ, Murray JB, Barril X (2011) J Am Chem Soc 133 (in press)

  29. Sheridan RP, Maiorov VN, Holloway MK, Cornell WD, Gao YD (2010) J Chem Inf Model 50:2029–2040

    Article  CAS  Google Scholar 

  30. Gohlke H, Klebe G (2002) Angew Chem 41:2644–2676

    Article  CAS  Google Scholar 

  31. Bissantz C, Kuhn B, Stahl M (2010) J Med Chem 53:5061–5084

    Article  CAS  Google Scholar 

  32. Hunter CA (2004) Ang. Chem Int Ed 43:5310–5324

    Article  CAS  Google Scholar 

  33. Taylor RD, Jewsbury PJ, Essex JW (2002) J Comput Aided Mol Des 3:151–166

    Article  Google Scholar 

  34. Cavasotto CN, Orry AJ (2007) Curr Top Med Chem 7:1006–1014

    Article  CAS  Google Scholar 

  35. Warren GL, Andrews CW, Capelli AM, Clarke B, LaLonde J, Lambert MH, Lindvall M, Nevins N, Semus SF, Senger S, Tedesco G, Wall ID, Woolven JM, Peishoff CE, Head MS (2006) J Med Chem 49:5912–5931

    Article  CAS  Google Scholar 

  36. Sándor M, Jiss R, Keseru GM (2010) J Chem Inf Model 50:1165–1172

    Article  Google Scholar 

  37. Plewczynski D, Lazniewski M, Augustyniak R, Ginalski K (2011) J Comput Chem 32:742–755

    Article  CAS  Google Scholar 

  38. Lyne PD, Lamb ML, Saeh JC (2006) J Med Chem 49:4805–4808

    Article  CAS  Google Scholar 

  39. Brown SP, Muchmore SW (2007) J Chem Inf Model 47:1493–1503

    Article  CAS  Google Scholar 

  40. Stoica I, Sadiq K, Coveney PV (2008) J Am Chem Soc 130:2639–2648

    Article  CAS  Google Scholar 

  41. Thompson DC, Humblet C, Joseph-McCarthy D (2008) J Chem Inf Model 48:1081–1091

    Article  CAS  Google Scholar 

  42. Camps P, Formosa X, Galdeano C, Muñoz-Torrero D, Ramírez L, Gómez E, Isambert N, Lavilla R, Badia A, Clos MV, Bartolini M, Mancini F, Andrisano V, Arce MP, Rodríguez-Franco MI, Huertas O, Dafni T, Luque FJ (2009) J Med Chem 52:5365–5379

    Google Scholar 

  43. Tzoupis H, Leonis G, Durdagi S, Mouchlis V, Mavromoustakos T, Papadopoulos MG (2011) J Comput Aided Mol Des 10:959–976

    Article  Google Scholar 

  44. Swanson JMJ, Adcock SA, McCammon JA (2005) J Chem Theory Comput 1:484–493

    Article  CAS  Google Scholar 

  45. Weis A, Katenzadeh K, Söderhjelm P, Nilsson I, Ryde U (2006) J Med Chem 49:6596–6606

    Article  CAS  Google Scholar 

  46. Wong S, Amaro RE, McCammon JA (2009) J Chem theory Comput 5:422–429

    Article  CAS  Google Scholar 

  47. Jacob K, Ryde U (2009) J Comput Aided Mol Des 23:63–71

    Article  Google Scholar 

  48. Genhenden S, Ryde U (2011) J Chem Theory Comput 7:3768–3778

    Article  Google Scholar 

  49. Traian S, Corbeil CR, Purisima EO (2010) J Chem Theory Comput 6:1608–1621

    Article  Google Scholar 

  50. Traian S, Qizhi C, Purisima EO (2011) J Chem Inf Model 51:2066–2081

    Article  Google Scholar 

  51. Kollman PA (1993) Chem Rev 93:2395–2417

    Article  CAS  Google Scholar 

  52. Free energy calculations. Theory and applications in chemistry and biology (2007) Chipot C, Pohorille A (eds) Springer series in chemical physics, vol 86. Springer, Berlin

  53. Jorgensen WL (2009) Acc Chem Res 42:724–733

    Article  CAS  Google Scholar 

  54. Poner JW, Wu C, Ren P, Pande VS, Chodera JD, Schnieders MJ, Haque I, Mobley DL, Lambrecht DS, DiStasio RA Jr, Head-Gordon M, Clark GNI, Johnson ME, Head-Gordon T (2010) J Phys Chem B 114:2549–2564

    Article  Google Scholar 

  55. Piquemal JP, Chevreau H, Gresh N (2007) J Chem Theory Comput 3:824–837

    Article  CAS  Google Scholar 

  56. Donchev AG, Ozrin VD, Subbotin MV, Tarasov OV, Tarasov VI (2005) Proc Natl Acad Sci USA 102:7829–7834

    Article  CAS  Google Scholar 

  57. Donchev AG, Galkin NG, Pereyaslavets LB, Tarasov VI (2007) J Chem Phys 125:244107–244119

    Article  Google Scholar 

  58. Misquitta AJ, Stone AJ (2008) J Chem Theory Comput 4:7–18

    Article  CAS  Google Scholar 

  59. Söderhjelm P, Kongsted J, Ryde U (2010) J Chem Theory Comput 6:1726–1737

    Article  Google Scholar 

  60. Luque FJ, Dehez F, Chipot C, Orozco M (2011) WIRES Comput Mol Sci 1:844–854

    Article  CAS  Google Scholar 

  61. Raha K, Merz KM Jr (2005) J Med Chem 48:4558–4575

    Article  CAS  Google Scholar 

  62. Hayik SA, Dunbrack R Jr, Merz KM Jr (2010) J Chem Theory Comput 6:3079–3091

    Article  CAS  Google Scholar 

  63. Hensen C, Hermann JC, Nam K, Ma S, Gao J, Höltje H-D (2004) J Med Chem 47:6673–6680

    Article  CAS  Google Scholar 

  64. Zhou T, Huang D, Caflisch A (2008) J Med Chem 51:4280–4288

    Article  CAS  Google Scholar 

  65. Khandelwal A, Lukacova V, Comez D, Kroll DM, Raha S, Balaz S (2005) J Med Chem 48:5437–5447

    Google Scholar 

  66. Anisimov VM, Cavasotto CN (2011) J Comput Chem 32:2254–2263

    Article  CAS  Google Scholar 

  67. Fanfrlik J, Bronowska AK, Rezac J, Preenosil O, Kovalinka J, Hobza P (2010) J Phys Chem B 114:12666–12678

    Article  CAS  Google Scholar 

  68. Dobes P, Rezac J, Fanfrlik J, Otyepka M, Hobza P (2011) J Phys Chem B 115:8581–8589

    Article  CAS  Google Scholar 

  69. Dobes P, Fanfrlik J, Rezac J, Otypeka M, Hobza P (2011) J Comput Aided Mol Des 25:223–235

    Article  CAS  Google Scholar 

  70. Ufimtsev IS, Martínez TJ (2008) J Chem Theory Comput 4:222–231

    Article  CAS  Google Scholar 

  71. Ufimtsev IS, Martínez TJ (2009) J Chem Theory Comput 5:1004–1015

    Article  CAS  Google Scholar 

  72. Ufimtsev IS, Martínez TJ (2009) J Chem Theory Comput 5:2619–2628

    Article  CAS  Google Scholar 

  73. Luehr N, Ufimtsev IS, Martínez TJ (2011) J Chem Theory Comput 7:949–954

    Google Scholar 

  74. Uejima Y, Terashima T, Maezono R (2011) J Comput Chem 32:2264–2272

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Spanish Ministerio de Innovación y Ciencia (SAF2008-05595, SAF2009-08811) and the Generalitat de Catalunya (2009-SGR00298).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Javier Luque.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barril, X., Javier Luque, F. Molecular simulation methods in drug discovery: a prospective outlook. J Comput Aided Mol Des 26, 81–86 (2012). https://doi.org/10.1007/s10822-011-9506-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-011-9506-1

Keywords

Navigation