Skip to main content

Advertisement

Log in

5-HT1A receptor pharmacophores to screen for off-target activity of α1-adrenoceptor antagonists

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

The α1-adrenoceptors (α1-ARs), in particular the α1A-AR subtype, are current therapeutic targets of choice for the treatment of urogenital conditions, such as benign prostatic hyperplasia (BPH). Due to the similarity between the transmembrane domains of the α1-AR subtypes, and the serotonin receptor subtype 1A (5-HT1A-R), currently used α1-AR subtype-selective drugs to treat BPH display considerable off-target affinity for the 5-HT1A-R, leading to side effects. We describe the construction and validation of pharmacophores for 5-HT1A-R agonists and antagonists. Through the structural diversity of the training sets used in their development, these pharmacophores define the properties of a compound needed to bind to 5-HT1A receptors. Using these and previously published pharmacophores in virtual screening and profiling, we have identified unique chemical compounds (hits) that fit the requirements to bind to our target, the α1A-AR, selectively over the off-target, the 5-HT1A-R. Selected hits have been obtained and their affinities for α1A-AR, α1B-AR and 5-HT1A-R determined in radioligand binding assays, using membrane preparations which contain human receptors expressed individually. Three of the tested hits demonstrate statistically significant selectivity for α1A-AR over 5-HT1A-R. All seven tested hits bind to α1A-AR, with two compounds displaying K i values below 1 μM, and a further two K i values of around 10 μM. The insights and knowledge gained through the development of the new 5-HT1A-R pharmacophores will greatly aid in the design and synthesis of derivatives of our lead compound, and allow the generation of more efficacious and selective ligands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Numbers indicate the Ballesteros-Weinstein numbering scheme where the first digit represents the transmembrane helix (TM) number followed by the position relative to the most conserved residue in each TM, assigned number 50. Numbers decrease towards the N-terminus.

References

  1. Guiard BP, El Mansari M, Merali Z, Blier P (2008) Functional interactions between dopamine, serotonin and norepinephrine neurons: an in vivo electrophysiological study in rats with monoaminergic lesions. Int J Neuropsychoph 11(5):625–639

    Article  CAS  Google Scholar 

  2. Kenakin T (2010) A holistic view of GPCR signaling. Nat Biotechnol 28(9):928–929

    Article  CAS  Google Scholar 

  3. Ahmad N, Keith-Ferris J, Gooden E, Abell T (2006) Making a case for domperidone in the treatment of gastrointestinal motility disorders. Curr Opin Pharmacol 6(6):571–576

    Article  CAS  Google Scholar 

  4. Albert PR, Zhou QY, Vantol HHM, Bunzow JR, Civelli O (1990) Cloning, functional expression, and messenger-RNA tissue distribution of the rat 5-hydroxytryptamine-1a receptor gene. J Biol Chem 265(10):5825–5832

    CAS  Google Scholar 

  5. Gitler MS, Piccio MM, Robillard JE, Jose PA (1991) Characterization of renal alpha-adrenoceptor subtypes in sheep during development. Am J Physiol 260(2):R407–R412

    CAS  Google Scholar 

  6. Langer SZ, Schoemaker H (1989) Alpha-adrenoceptor subtypes in blood-vessels—physiology and pharmacology. Clin Exp Hypertens A 11:21–30

    Article  Google Scholar 

  7. Auclair AL, Kleven MS, Besnard J, Depoortere R, Newman-Tancredi A (2006) Actions of novel antipsychotic agents on apomorphine-induced PPI disruption: influence of combined serotonin 5-HT1A receptor activation and dopamine D-2 receptor blockade. Neuropsychopharmacol 31(9):1900–1909

    Article  CAS  Google Scholar 

  8. Bantick RA, Deakin JFW, Grasby PM (2001) The 5-HT1A receptor in schizophrenia: a promising target for novel atypical neuroleptics? J Psychopharmacol 15(1):37–46

    Article  CAS  Google Scholar 

  9. Christmas TJ, Kirby RS (1991) Alpha-adrenoceptor blockers in the treatment of benign prostatic hyperplasia. World J Urol 9(1):36–40

    Article  Google Scholar 

  10. Hatzenbuhler NT, Baudy R, Evrard DA, Failli A, Harrison BL, Lenicek S, Mewshaw RE, Saab A, Shao U, Sze J, Zhang M, Zhou D, Chlenov M, Kagan M, Golembieski J, Hornby G, Lai M, Smith DL, Sullivan KM, Schechter LE, Andree TH (2008) Advances toward new antidepressants with dual serotonin transporter and 5-HT1A receptor affinity within a class of 3-aminochroman derivatives. Part 2. J Med Chem 51(21):6980–7004

    Article  CAS  Google Scholar 

  11. Jain KS, Bariwal JB, Kathiravan MK, Phoujdar MS, Sahne RS, Chauhan BS, Shah AK, Yadav MR (2008) Recent advances in selective alpha1-adrenoreceptor antagonists as antihypertensive agents. Bioorgan Med Chem 16(9):4759–4800

    Article  CAS  Google Scholar 

  12. Kanda H, Ishii K, Ogura Y, Imamura T, Kanai M, Arima K, Sugimura Y (2008) Naftopidil, a selective alpha-1 adrenoceptor antagonist, inhibits growth of human prostate cancer cells by G1 cell cycle arrest. Int J Cancer 122(2):444–451

    Article  CAS  Google Scholar 

  13. Nowak M, Kolaczkowski M, Pawlowski M, Bojarski AJ (2006) Homology modeling of the serotonin 5-HT1A receptor using automated docking of bioactive compounds with defined geometry. J Med Chem 49(1):205–214

    Article  CAS  Google Scholar 

  14. Sorbi C, Franchini S, Tait A, Prandi A, Gallesi R, Angeli P, Marucci G, Pirona L, Poggesi E, Brasili L (2009) 1,3-Dioxolane-based ligands as rigid analogues of naftopidil: structure-affinity/activity relationships at alpha1 and 5-HT1A receptors. Chem Med Chem 4(3):393–399

    CAS  Google Scholar 

  15. Teeter MM, Froimowitz M, Stec B, Durand CJ (1994) Homology modeling of the dopamine D-2 receptor and its testing by docking of agonists and tricyclic antagonists. J Med Chem 37(18):2874–2888

    Article  CAS  Google Scholar 

  16. Keiser MJ, Setola V, Irwin JJ, Laggner C, Abbas AI, Hufeisen SJ, Jensen NH, Kuijer MB, Matos RC, Tran TB, Whaley R, Glennon RA, Hert J, Thomas KLH, Edwards DD, Shoichet BK, Roth BL (2009) Predicting new molecular targets for known drugs. Nature 462(7270):175–181

    Google Scholar 

  17. Taguchi K, Yang M, Goepel M, Michel MC (1998) Comparison of human alpha1-adrenoceptor subtype coupling to protein kinase C activation and related signalling pathways. N-S Arch Pharmacol 357(2):100–110

    Article  CAS  Google Scholar 

  18. Michel MC, Vrydag W (2006) Alpha1-, alpha2- and beta-adrenoceptors in the urinary bladder, urethra and prostate. Brit J Pharmacol 147:S88–S119

    Article  CAS  Google Scholar 

  19. Rudner XL, Berkowitz DE, Booth JV, Funk BL, Cozart KL, D’Amico EB, El-Moalem H, Page SO, Richardson CD, Winters B, Marucci L, Schwinn DA (1999) Subtype specific regulation of human vascular alpha1-adrenergic receptors by vessel bed and age. Circulation 100(23):2336–2343

    Article  CAS  Google Scholar 

  20. Koshimizu T, Tanoue A, Hirasawa A, Yamauchi J, Tsujimoto G (2003) Recent advances in alpha1-adrenoceptor pharmacology. Pharmacol Therapeut 98(2):235–244

    Article  CAS  Google Scholar 

  21. Gillenwater JY, Conn RL, Chrysant SG, Roy J, Gaffney M, Ice K, Dias N (1995) Doxazosin for the treatment of benign prostatic hyperplasia in patients with mild-to-moderate essential-hypertension—a double-blind, placebo-controlled dose-response multicenter study. J Urology 154(1):110–115

    Article  CAS  Google Scholar 

  22. Palea S, Chang DF, Rekik M, Regnier A, Lluel P (2008) Comparative effect of alfuzosin and tamsulosin on the contractile response of isolated rabbit prostatic and iris dilator smooth muscles—possible model for intraoperative floppy-iris syndrome. J Cataract Refr Surg 34(3):489–496

    Article  Google Scholar 

  23. Takei R, Ikegaki I, Shibata K, Tsujimoto G, Asano T (1999) Naftopidil, a novel alpha1-adrenoceptor antagonist, displays selective inhibition of canine prostatic pressure and high affinity binding to cloned human alpha1-adrenoceptors. Jpn J Pharmacol 79(4):447–454

    Article  CAS  Google Scholar 

  24. Bortolozzi A, Amargos-Bosch M, Toth M, Artigas F, Adell A (2004) In vivo efflux of serotonin in the dorsal raphe nucleus of 5-HT1A receptor knockout mice. J Neurochem 88(6):1373–1379

    Article  CAS  Google Scholar 

  25. Li Q, Holmes A, Ma L, Van de Kar LD, Garcia F (2004) Medial hypothalamic 5-hydroxytryptamine (5-HT1A) receptors regulate neuroendocrine responses to stress and exploratory locomotor activity: application of recombinant adenovirus containing 5-HT1A sequences. J Neurosci 24(48):10868–10877

    Article  CAS  Google Scholar 

  26. Monti JM, Jantos H (2003) Differential effects of the 5-HT1A receptor agonist flesinoxan given locally or systemically on REM sleep in the rat. Eur J Pharmacol 478(2–3):121–130

    Article  CAS  Google Scholar 

  27. Yu YX, Ramage AG, Koss MC (2004) Pharmacological studies of 8-OH-DPAT-induced pupillary dilation in anesthetized rats. Eur J Pharmacol 489(3):207–213

    Article  CAS  Google Scholar 

  28. Mittra S, Malhotra S, Naruganahalli KS, Chugh A (2007) Role of peripheral 5-HT1A receptors in detrusor over activity associated with partial bladder outlet obstruction in female rats. Eur J Pharmacol 561(1–3):189–193

    Article  CAS  Google Scholar 

  29. MacDougall IJA, Griffith R (2006) Selective pharmacophore design for alpha1-adrenoceptor subtypes. J Mol Graph Model 25(1):146–157

    Article  CAS  Google Scholar 

  30. Stoddart ES, Senadheera S, MacDougall IJA, Griffith R, Finch AM (2011) A novel structural framework for alpha1A/D-adrenoceptor selective antagonists identified using subtype selective pharmacophores. Plos One 6(5):e19695

    Google Scholar 

  31. Lopez-Rodriguez ML, Morcillo MJ, Fernandez E, Porras E, Orensanz L, Beneytez ME, Manzanares J, Fuentes JA (2001) Synthesis and structure-activity relationships of a new model of arylpiperazines. 5. Study of the physicochemical influence of the pharmacophore on 5-HT1A/alpha1-adrenergic receptor affinity: synthesis of a new derivative with mixed 5-HT1A/D-2 antagonist properties. J Med Chem 44(2):186–197

    Article  CAS  Google Scholar 

  32. Strappaghetti G, Mastrini L, Lucacchini A, Giannaccini G, Betti L, Fabbrini L (2008) Synthesis and biological affinity of new imidazo- and indol-arylpiperazine derivatives: further validation of a pharmacophore model for alpha1-adrenoceptor antagonists. Bioorg Med Chem Lett 18(18):5140–5145

    Article  CAS  Google Scholar 

  33. Weber KC, Salum LB, Honorio KM, Andricopulo AD, da Silva ABF (2010) Pharmacophore-based 3D QSAR studies on a series of high affinity 5-HT1A receptor ligands. Eur J Med Chem 45(4):1508–1514

    Article  CAS  Google Scholar 

  34. Spitzer GM, Heiss M, Mangold M, Mark P, Kirchmair J, Wolber G, Liedl KR (2010) One concept, three implementations of 3D pharmacophore-based virtual screening: distinct coverage of chemical search space. J Chem Inf Model 50(7):1241–1247

    Article  CAS  Google Scholar 

  35. Lopata MA, Cleveland DW, Sollnerwebb B (1984) High-level transient expression of a chloramphenicol acetyl transferase gene by deae-dextran mediated DNA transfection coupled with a dimethylsulfoxide or glycerol shock-treatment. Nucleic Acids Res 12(14):5707–5717

    Article  CAS  Google Scholar 

  36. Perez DM, Piascik MT, Graham RM (1991) Solution-phase library screening for the identification of rare clones—isolation of an alpha-1d-adrenergic receptor cDNA. Mol Pharmacol 40(6):876–883

    CAS  Google Scholar 

  37. Bradford MM (1976) Rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein-dye binding. Anal Biochem 72(1–2):248–254

    Article  CAS  Google Scholar 

  38. Li H, Sutter J, Hoffmann R (2000) HypoGen: an automated system for generating 3D predictive pharmacophore models. In: Güner OF (ed) Pharmacophore perception, development, and use in drug design, International University Line Biotechnology Series, La Jolla, pp 171–189

  39. Chiang YK, Kuo CC, Wu YS, Chen CT, Coumar MS, Wu JS, Hsieh HP, Chang CY, Jseng HY, Wu MH, Leou JS, Song JS, Chang JY, Lyu PC, Chao YS, Wu SY (2009) Generation of ligand-based pharmacophore model and virtual screening for identification of novel tubulin inhibitors with potent anticancer activity. J Med Chem 52(14):4221–4233

    Article  CAS  Google Scholar 

  40. Ahmed M, Hossain M, Bhuiyan MA, Ishiguro M, Tanaka T, Muramatsu I, Nagatomo T (2008) Mutational analysis of the alpha1A-adrenergic receptor binding pocket of antagonists by radioligand binding assay. Biol Pharm Bull 31(4):598–601

    Article  CAS  Google Scholar 

  41. Cavalli A, Fanelli F, Taddei C, DeBenedetti PG, Cotecchia S (1996) Amino acids of the alpha(1B)-adrenergic receptor involved in agonist binding: differences in docking catecholamines to receptor subtypes. Febs Lett 399:9–13

    Google Scholar 

  42. Olivier B, Soudijn W, van Wijngaarden I (1999) The 5-HT1A receptor and its ligands: structure and function. Prog Drug Res 52:103–165

    Article  CAS  Google Scholar 

  43. Ryan AJ, Baker BR, Vermeulen NMJ (1970) Irreversible enzyme inhibitors. CLXXIV. Metabolism of 4-[p-(4,6-diamino-1,2-dihydro-2,2-dimethyl-s-triazin-1-yl)hydrocinnamido]-o-toluenesulfonyl fluoride (NSC-113423), and active-site-directed irreversible inhibitor of dihydrofolic reductase. J Med Chem 13(6):1140–1142

    Article  CAS  Google Scholar 

  44. Adams A, Jarrott B, Elmes BC, Denny WA, Wakelin LP (1985) Interaction of DNA-intercalating antitumor agents with adrenoceptors. Mol Pharmacol 27(4):480–491

    CAS  Google Scholar 

  45. Richardson CD, Donatucci CF, Page SO, Wilson KH, Schwinn DA (1997) Pharmacology of tamsulosin: saturation-binding isotherms and competition analysis using cloned alpha1-adrenergic receptor subtypes. Prostate 33(1):55–59

    Article  CAS  Google Scholar 

  46. Sharif NA, Drace CD, Williams GW, Crider JY (2004) Cloned human 5-HT1A receptor pharmacology determined using agonist binding and measurement of cAMP accumulation. J Pharm Pharmacol 56(10):1267–1274

    Article  CAS  Google Scholar 

  47. Pulito VL, Li XB, Varga SS, Mulcahy LS, Clark KS, Halbert SA, Reitz AB, Murray WV, Jolliffe LK (2000) An investigation of the uroselective properties of four novel alpha1A-adrenergic receptor subtype-selective antagonists. J Pharmacol Exp Ther 294(1):224–229

    CAS  Google Scholar 

  48. Quaglia W, Santoni G, Pigini M, Piergentili A, Gentili F, Buccioni A, Mosca M, Lucciarini R, Amantini C, Nabissi MI, Ballarini P, Poggesi E, Leonardi A, Giannella M (2005) Structure-activity relationships in 1,4-benzodioxan-related compounds. 8. {2-[2-(4-chlorobenzyloxy)phenoxy]ethyl}-[2-(2,6-dimethoxyphenoxy)ethyl]amine (clopenphendioxan) as a tool to highlight the involvement of alpha(1D)- and alpha(1B)-adrenoreceptor subtypes in the regulation of human PC-3 prostate cancer cell apoptosis and proliferation. J Med Chem 48(24):7750–7763

    Article  CAS  Google Scholar 

  49. Benning CM, Kyprianou N (2002) Quinazoline-derived alpha 1-adrenoceptor antagonists induce prostate cancer cell apoptosis via an alpha 1-adrenoceptor-independent action. Cancer Res 62(2):597–602

    CAS  Google Scholar 

  50. Andersson KE, Wyllie MG (2003) Ejaculatory dysfunction: why all alpha-blockers are not equal. BJU Int 92(9):876–877

    Article  Google Scholar 

  51. Chanda PK, Minchin MCW, Davis AR, Greenberg L, Reilly Y, Mcgregor WH, Bhat R, Lubeck MD, Mizutani S, Hung PP (1993) Identification of residues important for ligand-binding to the human 5-hydroxytryptamine-1A serotonin receptor. Mol Pharmacol 43(4):516–520

    CAS  Google Scholar 

  52. Franchini S, Prandi A, Sorbi C, Tait A, Baraldi A, Angeli P, Buccioni M, Cilia A, Poggesi E, Fossa P, Brasili L (2010) Discovery of a new series of 5-HT1A receptor agonists. Bioorg Med Chem Lett 20(6):2017–2020

    Article  CAS  Google Scholar 

  53. Gaillard P, Carrupt PA, Testa B, Schambel P (1996) Binding of arylpiperazines, (aryloxy)propanolamines, and tetrahydropyridylinldoles to the 5-HT1A receptor: contribution of the molecular lipophilicity potential to three-dimensional quantitative structure-affinity relationship models. J Med Chem 39(1):126–134

    Article  CAS  Google Scholar 

  54. Lopez-Rodriguez ML, Ayala D, Viso A, Benhamu B, de la Pradilla RF, Zarza F, Ramos JA (2004) Synthesis and structure-activity relationships of a new model of arylpiperazines. Part 7: study of the influence of lipophilic factors at the terminal amide fragment on 5-HT1A affinity/selectivity. Bioorgan Med Chem 12(6):1551–1557

    Article  CAS  Google Scholar 

  55. Franchini S, Prandi A, Baraldi A, Sorbi C, Tait A, Buccioni M, Marucci G, Cilia A, Pirona L, Fossa P, Cichero E, Brasili L (2010) 1,3-Dioxolane-based ligands incorporating a lactam or imide moiety: structure-affinity/activity relationship at alpha1-adrenoceptor subtypes and at 5-HT1A receptors. Eur J Med Chem 45(9):3740–3751

    Article  CAS  Google Scholar 

  56. Sabb AL, Vogel RL, Kelly MG, Palmer Y, Smith DL, Andree TH, Schechter LE (2001) 1,2,5-thiadiazole derivatives are potent and selective ligands at human 5-HT1A receptors. Bioorg Med Chem Lett 11(8):1069–1071

    Article  CAS  Google Scholar 

  57. Shen ZQ, Ramamoorthy PS, Hatzenbuhler NT, Evrard DA, Childers W, Harrison BL, Chlenov M, Hornby G, Smith DL, Sullivan KM, Schechter LE, Andree TH (2010) Synthesis and structure-activity relationship of novel lactam-fused chroman derivatives having dual affinity at the 5-HT1A receptor and the serotonin transporter. Bioorg Med Chem Lett 20(1):222–227

    Article  CAS  Google Scholar 

  58. Rasmussen SG, Choi HJ, Fung JJ, Pardon E, Casarosa P, Chae PS, Devree BT, Rosenbaum DM, Thian FS, Kobilka TS, Schnapp A, Konetzki I, Sunahara RK, Gellman SH, Pautsch A, Steyaert J, Weis WI, Kobilka BK (2011) Structure of a nanobody-stabilized active state of the beta2 adrenoceptor. Nature 469(7329):175–180

    Article  CAS  Google Scholar 

  59. Doddareddy MR, Choo H, Cho YS, Rhim H, Koh HY, Lee JH, Jeong SW, Pae AN (2007) 3D pharmacophore based virtual screening of T-type calcium channel blockers. Bioorgan Med Chem 15(2):1091–1105

    Article  CAS  Google Scholar 

  60. Ryu K, Kim ND, Il Choi S, Han CK, Yoon JH, No KT, Kim KH, Seong BL (2009) Identification of novel inhibitors of HCV RNA-dependent RNA polymerase by pharmacophore-based virtual screening and in vitro evaluation. Bioorgan Med Chem 17(8):2975–2982

    Article  CAS  Google Scholar 

  61. Al-Sha’er MA, Taha MO (2010) Discovery of novel CDK1 inhibitors by combining pharmacophore modeling, QSAR analysis and in silico screening followed by in vitro bioassay. Eur J Med Chem 45(9):4316–4330

    Article  Google Scholar 

  62. Aparoy P, Reddy KK, Kalangi SK, Reddy TC, Reddanna P (2010) Pharmacophore modeling and virtual screening for designing potential 5-lipoxygenase inhibitors. Bioorg Med Chem Lett 20(3):1013–1018

    Article  CAS  Google Scholar 

  63. Linnanen T, Brisander M, Unelius L, Sundholm G, Hacksell U, Johansson AM (2000) Derivatives of (R)-1,11-methyleneaporphine: synthesis, structure, and interactions with G-protein coupled receptors. J Med Chem 43(7):1339–1349

    Article  CAS  Google Scholar 

  64. Newman-Tancredi A, Martel JC, Assie MB, Buritova J, Lauressergues E, Cosi C, Heusler P, Bruins Slot L, Colpaert FC, Vacher B, Cussac D (2009) Signal transduction and functional selectivity of F15599, a preferential post-synaptic 5-HT1A receptor agonist. Br J Pharmacol 156(2):338–353

    Article  CAS  Google Scholar 

  65. Newman-Tancredi A, Gavaudan S, Conte C, Chaput C, Touzard M, Verriele L, Audinot V, Millan MJ (1998) Agonist and antagonist actions of antipsychotic agents at 5-HT1A receptors: a [S-35]GTP gamma S binding study. Eur J Pharmacol 355(2–3):245–256

    Article  CAS  Google Scholar 

  66. Maurel JL, Autin JM, Funes P, Newman-Tancredi A, Colpaert F, Vacher B (2007) High-efficacy 5-HT1A Agonists for antidepressant treatment: a renewed opportunity. J Med Chem 50(20):5024–5033

    Article  CAS  Google Scholar 

  67. Zhou DH, Hatzenbuhler NT, Gross JL, Harrison BL, Evrard DA, Chlenov M, Golembieski J, Hornby G, Schechter LE, Smith DL, Andree TH, Stack GP (2007) Novel pyridyl-fused 3-amino chroman derivatives with dual action at serotonin transporter and 5-HT1A receptor. Bioorg Med Chem Lett 17(11):3117–3121

    Article  CAS  Google Scholar 

  68. Paluchowska MH, Bugno R, Duszynska B, Tatarczynska E, Nikiforuk A, Lenda T, Chojnacka-Wojcik E (2007) The influence of modifications in imide fragment structure on 5-HT1A and 5-HT7 receptor affinity and in vivo pharmacological properties of some new 1-(m-trifluoromethylphenyl)piperazines. Bioorgan Med Chem 15(22):7116–7125

    Article  CAS  Google Scholar 

  69. Picard M, Morisset S, Cloix JF, Bizot JC, Guerin M, Beneteau V, Guillaumet G, Hevor TK (2010) Pharmacological, neurochemical, and behavioral profile of Jb-788, a new 5-HT1A agonist. Neuroscience 169(3):1337–1346

    Article  CAS  Google Scholar 

  70. Chemel BR, Roth BL, Armbruster B, Watts VJ, Nichols DE (2006) WAY-100635 is a potent dopamine D4 receptor agonist. Psychopharmacology 188(2):244–251

    Article  CAS  Google Scholar 

  71. Ward SE, Eddershaw PJ, Scott CM, Gordon LJ, Lovell PJ, Moore SH, Smith PW, Starr KR, Thewlis KM, Watson JM (2008) Discovery of potent, orally bioavailable, selective 5-HT1A/B/D receptor antagonists. J Med Chem 51(10):2887–2890

    Article  CAS  Google Scholar 

  72. Kuo GH, Prouty C, Murray WV, Pulito V, Jolliffe L, Cheung P, Varga S, Evangelisto M, Wang J (2000) Design, synthesis, and structure-activity relationships of phthalimide-phenylpiperazines: a novel series of potent and selective alpha1A-adrenergic receptor antagonists. J Med Chem 43(11):2183–2195

    Article  CAS  Google Scholar 

  73. Dunlop J, Zhang Y, Smith DL, Schechter LE (1998) Characterization of 5-HT1A receptor functional coupling in cells expressing the human 5-HT1A receptor as assessed with the cytosensor microphysiometer. J Pharmacol Toxicol Methods 40(1):47–55

    Article  CAS  Google Scholar 

  74. Krushinski JH, Schaus JM, Thompson DC, Calligaro DO, Nelson DL, Luecke SH, Wainscott DB, Wong DT (2007) Indoloxypropanolamine analogues as 5-HT1A receptor antagonists. Bioorg Med Chem Lett 17(20):5600–5604

    Article  CAS  Google Scholar 

  75. Dessalew N (2008) QSAR study on dual 5-HT1A and 5-HT1B antagonists: an insight into the structural requirement for antidepressant activity. Arch Pharm 341(5):314–322

    Article  CAS  Google Scholar 

  76. Serafinowska HT, Blaney FE, Lovell PJ, Merlo GG, Scott CM, Smith PW, Starr KR, Watson JM (2008) Novel 5-HT1A/1B/1D receptors antagonists with potent 5-HT reuptake inhibitory activity. Bioorg Med Chem Lett 18(20):5581–5585

    Article  CAS  Google Scholar 

  77. Evrard DA, Zhou P, Yi SY, Zhou DH, Smith DL, Sullivan KM, Hornby GA, Schechter LE, Andree TH, Mewshaw RE (2005) Studies towards the next generation of antidepressants. Part 4: derivatives of 4-(5-fluoro-1H-indol-3-yl)cyclohexylamine with affinity for the serotonin transporter and the 5-HT1A receptor. Bioorg Med Chem Lett 15(4):911–914

    Article  CAS  Google Scholar 

  78. Saussy DL Jr, Goetz AS, Queen KL, King HK, Lutz MW, Rimele TJ (1996) Structure activity relationships of a series of buspirone analogs at alpha-1 adrenoceptors: further evidence that rat aorta alpha-1 adrenoceptors are of the alpha-1D-subtype. J Pharmacol Exp Ther 278(1):136–144

    CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the help of Dr Luke Hunter, School of Chemistry, University of New South Wales, in determining the purity and identity of the test compounds, using the Analytical Centre Facilities. J. Chen wishes to acknowledge financial support through a China Scholarship Council scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renate Griffith.

Additional information

Tony Ngo and Timothy J. Nicholas have contributed equally.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ngo, T., Nicholas, T.J., Chen, J. et al. 5-HT1A receptor pharmacophores to screen for off-target activity of α1-adrenoceptor antagonists. J Comput Aided Mol Des 27, 305–319 (2013). https://doi.org/10.1007/s10822-013-9647-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-013-9647-5

Keywords

Navigation