Skip to main content
Log in

Substrate recognition by norovirus polymerase: microsecond molecular dynamics study

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Molecular dynamics simulations of complexes between Norwalk virus RNA dependent RNA polymerase and its natural CTP and 2dCTP (both containing the O5′–C5′–C4′–O4′ sequence of atoms bridging the triphosphate and sugar moiety) or modified coCTP (C5–O5′–C4′–O4′), cocCTP (C5–O5′–C4′–C4′′) substrates were produced by means of CUDA programmable graphical processing units and the ACEMD software package. It enabled us to gain microsecond MD trajectories clearly showing that similar nucleoside triphosphates can bind surprisingly differently into the active site of the Norwalk virus RNA dependent RNA polymerase. It corresponds to their different modes of action (CTP—substrate, 2dCTP—poor substrate, coCTP—chain terminator, cocCTP—inhibitor). Moreover, extremely rare events—as repetitive pervasion of Arg182 into a potentially reaction promoting arrangement—were captured.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sofia MJ, Chang W, Furman PA, Mosley RT, Ross BS (2012) Nucleoside, nucleotide, and non-nucleoside inhibitors of hepatitis C virus NS5B RNA-dependent RNA-polymerase. J Med Chem 55:2481–2531

    Article  CAS  Google Scholar 

  2. De Francesco R, Migliaccio G (2005) Challenges and successes in developing new therapies for hepatitis C. Nature 436:953–960

    Article  Google Scholar 

  3. Zamyatkin DF, Pirra F, Alonso JM, Harki DA, Peterson BR, Grochulski P, Ng KK-S (2008) Structural insights into mechanisms of catalysis and inhibition in norwalk virus polymerase. J Biol Chem 283:7705–7712

    Article  CAS  Google Scholar 

  4. Zamyatkin DF, Parra F, Machín A, Grochulski P, Ng KK-S (2009) Binding of 2’-amino-2’-deoxycytidine-5’-triphosphate to norovirus polymerase induces rearrangement of the active site. J Mol Biol 390:10–16

    Article  CAS  Google Scholar 

  5. Paeshuyse J, Vliegen I, Coelmont L, Leyssen P, Tabarrini O, Herdewijn P, Mittendorfer H, Easmon J, Cecchetti V, Bartenschlager R, Puerstinger G, Neyts J (2008) Comparative in vitro anti-hepatitis c virus activities of selected series of polymerase, protease, and helicase inhibitors. Antimicrob Agents Chemother 52(9):3433–3437

    Article  CAS  Google Scholar 

  6. Bressanelli S, Tomei L, Rey FA, De Francesco R (2002) Structural analysis of the hepatitis C virus RNA polymerase in complex with ribonucleotides. J Virol 76:3482–3492

    Article  CAS  Google Scholar 

  7. Ng KK, Pendas-Franco N, Rojo J, Boga JA, Machin A, Alonso JM, Parra F (2004) Crystal structure of norwalk virus polymerase reveals the carboxyl terminus in the active site cleft. J Biol Chem 279:16638–16645

    Article  CAS  Google Scholar 

  8. Gong P, Peersen OB (2010) Structural basis for active site closure by the poliovirus RNA-dependent RNA polymerase. Proc Natl Acad Sci 107:22505–22510

    Article  CAS  Google Scholar 

  9. Arnold JJ, Gohara DW, Cameron CE (2004) Poliovirus RNA-dependent RNA polymerase (3Dpol): pre-steady-state kinetic analysis of ribonucleotide incorporation in the presence of Mn2+. Biochemistry 43:5138–5148

    Article  CAS  Google Scholar 

  10. Huang HF, Chopra R, Verdine GL, Harrison SC (1998) Structure of a covalently trapped catalytic complex of HIV-1 reverse transcriptase: implications for drug resistance. Science 282:1669–1675

    Article  CAS  Google Scholar 

  11. Migliaccio G, Tomassini JE, Carroll SS, Tomei L, Altamura S, Bhat B, Bartholomew L, Bosserman MR, Ceccacci A, Colwell LF, Cortese R, De Francesco R, Eldrup AB, Getty KL, Hou XS, LaFemina RL, Ludmerer SW, MacCoss M, McMasters DR, Stahlhut MW, Olsen DB, Hazuda DJ, Flores OA (2003) Characterization of resistance to non-obligate chain-terminating ribonucleoside analogs that inhibit hepatitis C virus replication in vitro. J Biol Chem 278(49):49164–49170

    Article  CAS  Google Scholar 

  12. Zlatev I, Dutartre H, Barvik I, Neyts J, Canard B, Vasseur JJ, Alvarez K, Morvan F (2008) Phosphoramidate dinucleosides as hepatitis C virus polymerase inhibitors. J Med Chem 51(18):5745–5757

    Article  CAS  Google Scholar 

  13. Priet S, Zlatev I, Barvík I Jr, Geerts K, Leyssen P, Neyts J, Dutartre H, Canard B, Vasseur JJ, Morvan F, Alvarez K (2010) 3’-Deoxy phosphoramidate dinucleosides as improved inhibitors of hepatitis C virus subgenomic replicon and NS5B polymerase activity. J Med Chem 53:6608–6617

    Article  CAS  Google Scholar 

  14. Wales DL, Schooley RT, Kaihara KA, Beadle JR, Hostetler KY (2008) Anti-hepatitis C virus replicon activity of alkoxyalkyl esters of (S)-HPMPA and other acyclic nucleoside phosphonates. Antiviral Res 78(2):A21

    Article  Google Scholar 

  15. Koh Y, Shim JH, Wu JZ, Zhong W, Hong Z, Girardet JL (2005) Design, synthesis, and antiviral activity of adenosine 5’-phosphonate analogues as chain terminators against hepatitis C virus. J Med Chem 48:2867–2875

    Article  CAS  Google Scholar 

  16. Sheridan C (2012) Calamitous HCV trial casts shadow over nucleoside drugs. Nature Biotechnol 30:1015–1016

    Article  CAS  Google Scholar 

  17. Radhakrishnan R, Schlick T (2006) Correct and incorrect nucleotide incorporation pathways in DNA polymerase beta. Biochem Biophys Res Commun 24:521–529

    Article  Google Scholar 

  18. Radhakrishnan R, Schlick T (2005) Fidelity discrimination in DNA polymerase beta: differing closing profiles for a mismatched (G:A) versus matched (G:C) base pair. J Am Chem Soc 127:13245–13253

    Article  CAS  Google Scholar 

  19. Radhakrishnan R, Schlick T (2005) Orchestration of cooperative events in DNA synthesis and repair mechanism unraveled by transition path sampling of DNA polymerase beta’s closing. Proc Natl Acad Sci 101:5970–5975

    Article  Google Scholar 

  20. Lin P, Pedersen LC, Batra VK, Beard WA, Wilson SH, Pedersen LG (2006) Energy analysis of chemistry for correct insertion by DNA polymerase beta. Proc Natl Acad Sci 103:13294–13299

    Article  CAS  Google Scholar 

  21. Lin P, Batra VK, Pedersen LC, Beard WA, Wilson SH, Pedersen LG (2008) Incorrect nucleotide insertion at the active site of a G:A mismatch catalyzed by DNA polymerase beta. Proc Natl Acad Sci 105:5670–5674

    Article  CAS  Google Scholar 

  22. Wang L, Yu X, Hu P, Broyde S, Zhang Y (2007) A water-mediated and substrate-assisted catalytic mechanism for sulfolobus solfataricus DNA polymerase IV. J Am Chem Soc 129:4731–4737

    Article  CAS  Google Scholar 

  23. Sucato CA, Upton TG, Kashemirov BA, Batra VK, Martinek V, Xiang Y, Beard WA, Pedersen LC, Wilson SH, McKenna CE, Florian J, Warshel A, Goodman MF (2007) Modifying the beta, gamma leaving-group bridging oxygen alters nucleotide incorporation efficiency, fidelity and the catalytic mechanism of DNA polymerase beta. Biochemistry 46:461–471

    Article  CAS  Google Scholar 

  24. Oelschlaegner P, Klahn M, Beard WA, Wilson SH, Warshel A (2007) Magnesium-cationic dummy atom molecules enhance representation of DNA polymerase beta in molecular dynamics simulations: improved accuracy in studies of structural features and mutational effects. J Mol Biol 366:687–701

    Article  Google Scholar 

  25. Jorgensen WL, Chandrasekhar J, Madura J, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935

    Article  Google Scholar 

  26. Pearlman DA, Case DA, Caldwell JW, Ross WR, Cheatham TE, DeBolt S, Ferguson D, Seibel G, Kollman P (1995) AMBER, a package of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate the structural and energetic properties of molecules. Comput Phys Commun 91:1–41

    Article  CAS  Google Scholar 

  27. Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA (1995) A 2nd generation force-field for the simulation of proteins, nucleic-acids, and organic-molecules. J Am Chem Soc 117:5179–5197

    Article  CAS  Google Scholar 

  28. Perez A, Marchan I, Svozil D, Sponer J, Cheatham TE III, Laughton ChA, Orozco M (2007) Refinement of the AMBER force field for nucleic acids: improving the description of alpha/gamma conformers. Biophys J 92:3817–3829

    Article  CAS  Google Scholar 

  29. Dal Peraro M, Spiegel K, Lamoureux G, De Vivo M, De Grado WF, Klein ML (2007) Modeling the charge distribution at metal sites in proteins for molecular dynamics simulations. J Struct Biol 157:444–453

    Article  CAS  Google Scholar 

  30. Xiang Y, Oelschlaeger P, Florian J, Goodman MF, Warshel A (2006) Simulating the effect of DNA polymerase mutations on transition-state energetics and fidelity: evaluating amino acid group contribution and allosteric coupling for ionized residues in human pol beta. Biochemistry 45:7036–7048

    Article  CAS  Google Scholar 

  31. Florian J, Goodman MF, Warshel A (2003) Computer simulation of the chemical catalysis of DNA polymerases: discriminating between alternative nucleotide insertion mechanisms for T7 DNA polymerase. J Am Chem Soc 125:8163–8177

    Article  CAS  Google Scholar 

  32. Aqvist J (1990) Ion-water interaction potentials derived from free energy perturbation simulations. J Phys Chem 94:8021–8024

    Article  Google Scholar 

  33. Sgrignani J, Magistrato A (2012) The structural role of Mg2 + ions in a class I RNA polymerase ribozyme: a molecular simulation study. J Phys Chem B 116:2259–2268

    Article  CAS  Google Scholar 

  34. Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kale L, Schulten K (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26:1781–1802

    Article  CAS  Google Scholar 

  35. Cheatham TE, Miller JL, Fox T, Darden TA, Kollman PA (1994) Molecular dynamics simulations on solvated biomolecular systems: the particle mesh Ewald method leads to stable trajectories of DNA, RNA, and proteins. J Am Chem Soc 117:4193–4194

    Article  Google Scholar 

  36. Ryckaert JP, Ciccotti G, Berendsen HJC (1977) Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23:327–341

    Article  CAS  Google Scholar 

  37. Harvey MJ, Giupponi G, De Fabritiis G (2009) ACEMD: accelerating biomolecular dynamics in the microsecond time scale. J Chem Theory Comput 5:1632–1639

    Article  CAS  Google Scholar 

  38. ACEMD http://www.acellera.com/

  39. Andersen HC (1983) RATTLE: a “velocity” version of the SHAKE algorithm for molecular dynamics calculations. J Comput Phys 52:24–34

    Article  CAS  Google Scholar 

  40. Lambrakos SG, Boris JP, Oran ES, Chandrasekhar I, Nagumo M (1989) A modified SHAKE algorithm for maintaining rigid bonds in molecular dynamics simulations of large molecules. J Comput Phys 85:473–486

    Article  Google Scholar 

  41. Giorgino T, Gianni de Fabritiis (2011) A high-throughput steered molecular dynamics study on the free energy profile of ion permeation through gramicidin A. J Chem Theor Comput 7:1943–1950

  42. Selent M, Sanz F, Pastor M, De Fabritiis G (2010) Induced effects of sodium ions on dopaminergic G-protein coupled receptors. PLOS Comput Biol 6:e1000884

    Google Scholar 

  43. Buch I, Giorgino T, De Fabritiis G (2011) Complete reconstruction of an enzyme-inhibitor binding process by molecular dynamics simulations. Proc Natl Acad Sci 108:10184–10189

    Article  CAS  Google Scholar 

  44. Feenstra KA, Hess B, Berendsen HJC (1999) Improving efficiency of large time-scale molecular dynamics simulations of hydrogen-rich systems. J Comput Chem 20:786–798

    Article  CAS  Google Scholar 

  45. Humphrey W, Dalke A, Schulten K (1996) VMD—visual molecular dynamics. J Mol Graph 14:33–38

    Article  CAS  Google Scholar 

  46. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF chimera—a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612

    Article  CAS  Google Scholar 

  47. Lavery R, Moakher M, Maddocks JH, Petkeviciute D, Zakrzewska K (2009) Conformational analysis of nucleic acids revisited: curves+. Nucleic Acids Res 37:5917–5929

    Article  CAS  Google Scholar 

  48. Točík Z, Buděšínský M, Barvík I Jr, Rosenberg I (2009) Conformational evaluation of labeled C3’-O-P-(13)CH(2)-O-C4’’ phosphonate internucleotide linkage, a phosphodiester isostere. Biopolymers 91:514–529

    Article  Google Scholar 

  49. Lansdon EB, Samuel D, Lagpacan L, Brendla KM, White KL, Hung M, Liu X, Boojamra CG, Mackman RL, Cihlar T, Ray AS, McGrath ME, Swaminathan S (2010) Visualizing the molecular interactions of a nucleotide analog, GS-9148, with HIV-1 reverse transcriptase-DNA complex. J Mol Biol 397:967–978

    Article  CAS  Google Scholar 

  50. Arnold JJ, Cameron CE (2004) Poliovirus RNA-dependent RNA polymerase (3Dpol): pre-steady-state kinetic analysis of ribonucleotide incorporation in the presence of Mg2+. Biochemistry 43:5126–5137

    Article  CAS  Google Scholar 

  51. Gohara DW, Crotty S, Arnold JJ, Yoder JD, Andino R, Cameron CE (2000) Poliovirus RNA-dependent RNA polymerase (3Dpol). J Biol Chem 275:25523–25532

    Article  CAS  Google Scholar 

  52. Ranjith-Kumar CT, Sarisky RT, Gutshall L, Thomson M, Kao CC (2004) De Novo initiation pocket mutations have multiple effects on hepatitis C virus RNA-dependent RNA polymerase activities. J Virol 78:12207–12217

    Article  CAS  Google Scholar 

  53. Sarafianos SG, Pandey VN, Kaushik N, Modak MJ (1995) Site-directed mutagenesis of arginine 72 of HIV-1 reverse transcriptase. J Biol Chem 270:19729–19735

    Article  CAS  Google Scholar 

  54. Glennon TM, Villa J, Warshel A (2000) How does GAP catalyze the GTPase reaction of Ras?: a computer simulation study. Biochemistry 39:9641–9651

    Article  CAS  Google Scholar 

  55. te Heesen H, Gerwert K, Schlitter J (2007) Role of the arginine finger in Ras. RasGAP revealed by QM/MM calculations. FEBS Lett 581:5677–5684

    Article  Google Scholar 

  56. Oldham WM, Hamm HE (2006) Structural basis of function in heterotrimeric G proteins. Q Rev Biophys 39:117–166

    Article  CAS  Google Scholar 

  57. Kamerlin SCL, Warshel A (2011) The empirical valence bond model: theory and applications. Wiley Interdiscip Rev Comput Mol Sci 1:30–45

    Article  CAS  Google Scholar 

  58. Sgrignani J, Magistrato A (2013) First-principles modeling of biological systems and structure-based drug-design. Current Comput Aided Drug Design 9:15–34

    Google Scholar 

  59. Senn HM, Thiel W (2009) QM/MM methods for biomolecular systems. Angew Chem Int Ed 48:1198–1229

    Article  CAS  Google Scholar 

  60. Groenhof G (2013) Introduction to QM/MM simulations. Methods Mol Biol 924:43–66

    Article  CAS  Google Scholar 

  61. Vreven T, Byun KS, Komaromi I, Dapprich S, Montgomery JA Jr, Morokuma K, Frisch MJ (2006) Combining quantum mechanics methods with molecular mechanics methods in ONIOM. J Chem Theory Comput 2:815–826

    Article  CAS  Google Scholar 

  62. Laio A, Gervasio FL (2008) Metadynamics: a method to simulate rare events and reconstruct the free energy in biophysics, chemistry and material science. Rep Progr Phys 71:126601

    Article  Google Scholar 

  63. Gervasio FL, Laio A, Parrinello M (2005) Flexible docking in solution using metadynamics. J Am Chem Soc 127:2600–2607

    Article  CAS  Google Scholar 

  64. Grater F, de Groot BL, Jiang H, Grubmuller H (2006) Ligand-release pathways in the pheromone-binding protein of bombyx mori. Structure 14:1567–1576

    Article  Google Scholar 

  65. Sugita Y, Okamoto Y (1999) Replica-exchange molecular dynamics method for protein folding. Chem Phys Lett 314:141–151

    Article  CAS  Google Scholar 

  66. Li MS, Mai BK (2012) Steered molecular dynamics—a promising tool for drug design. Curr Bioinform 7:342–351

    Article  CAS  Google Scholar 

  67. Grubmuller H, Heymann B, Tavan P (1996) Ligand binding: molecular mechanics calculation of the streptavidin-biotin rupture force. Science 271:997–999

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Grant Agency of the Czech Republic (202/09/0193). The access to computing and storage facilities owned by parties and projects contributing to the National Grid Infrastructure MetaCentrum, provided under the programme “Projects of Large Infrastructure for Research, Development, and Innovations” (LM2010005) is highly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Barvík.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10822_2013_9652_MOESM1_ESM.tif

Figure S1: NV RdRp in complex with nucleic acids (PDB id: 3BSO [3-4]). NV RdRp has a typical structure of polymerases resembling the right hand (palm—grey, thumb—blue, fingers—red). In RdRps, thumb and fingers are bound, and hence not allowed to change conformation independently (TIFF 2797 kb)

10822_2013_9652_MOESM2_ESM.tif

Figure S2: CTP in the active site of NV RdRp shown in the context of Primer and Template RNA. Mg2+ ions are bound by conserved aspartic acids (Asp344, Asp343, Asp242) in the palm domain of NV RdRp (TIFF 14913 kb)

10822_2013_9652_MOESM3_ESM.tif

Figure S2: CTP in the active site of NV RdRp shown in the context of Primer and Template RNA. Mg2+ ions are bound by conserved aspartic acids (Asp344, Asp343, Asp242) in the palm domain of NV RdRp (TIFF 11186 kb)

Figure S3: Structure of CTP, 2dCTP, coCTP and cocCTP (TIFF 128 kb)

Figure S4: Point charges (TIFF 293 kb)

Figure S5: Force constants for modified parts of CTP analogs (DOC 5 kb)

Figure S6: Time evolution of the total energy within MD simulations (TIFF 6371 kb)

Figure S7: Time evolution of RMSD for NV RdRp and nucleic acids (EPS 55 kb)

10822_2013_9652_MOESM9_ESM.eps

Figure S8: Time evolution of Mg1 2+–Mg2 2+, Mg1 2+—ligand and Mg2 2+—ligand distances in the NV RdRp active site. Mg1 2+ ligands (see Figure S2b) are distinguished in charts by the following color code: water molecule (red line), 3′ RNA terminus (green), α-phosphate/phosphonate group of CTP/2dCTP/coCTP/cocCTP (blue), Asp344 (magenta), Asp343 (cyan), Asp242 (yellow). Mg2 2+ ligands are distinguished in charts by the following color code: α-phosphate/phosphonate group of CTP/2dCTP/coCTP/cocCTP (red), β-phosphate group (green), γ-phosphate group (blue), Tyr243 (magenta), Asp242 (cyan), Asp343 (yellow) (EPS 32060 kb)

Figure S9: Time evolution of distances between RNA_primer_C2′ and C1′_xCTP atoms (EPS 455 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maláč, K., Barvík, I. Substrate recognition by norovirus polymerase: microsecond molecular dynamics study. J Comput Aided Mol Des 27, 373–388 (2013). https://doi.org/10.1007/s10822-013-9652-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-013-9652-8

Keywords

Navigation