Skip to main content
Log in

Detection of tautomer proportions of dimedone in solution: a new approach based on theoretical and FT-IR viewpoint

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Molecular structures of stable tautomers of dimedone [5,5-dimethyl-cyclohexane-1,3-dione (1) and 3-hydroxy-5,5-dimethylcyclohex-2-enone (2)] were optimized and vibrational frequencies were calculated in five different organic solvents (dimethylsulfoxide, methanol, acetonitrile, dichloromethane and chloroform). Geometry optimizations and harmonic vibrational frequency calculations were performed at DFT 6-31+G(d,p), DFT 6-311++G(2d,2p), MP2 6-311++G (2d,2p) and MP2 aug-cc-pVDZ levels for both stable forms of dimedone. Experimental FT-IR spectra of dimedone have also been recorded in the same solvents. A new approach was developed in order to determine tautomers’ ratio using both experimental and theoretical data in Lambert–Beer equation. Obtained results were compared with experimental results published in literature. It has been concluded that while DFT 6-31+G(d,p) method provides accurate enol ratio in DMSO, MeOH, and DCM, in order to obtain accurate results for the other solvents the MP2 aug-cc-pVDZ level calculations should be used for CH3CN and CHCl3 solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Watson JD, Crick FHC (1953) Nature 171:737–738

    Article  CAS  Google Scholar 

  2. Löwdin PO (1965) Adv Quantum Chem 2:213–360

    Article  Google Scholar 

  3. Pullman B, Pullman A (1971) Adv Heterocycl Chem 13:77–159

    Article  Google Scholar 

  4. Topal MD, Fresco JR (1976) Nature 263:285–289

    Article  CAS  Google Scholar 

  5. Raczynska ED, Kosinska W, Osmialowski B, Gawinecki R (2005) Chem Rev 105:3561–3612

    Article  CAS  Google Scholar 

  6. Minkin VI, Olekhnovich LP, Zhdanov YA (1981) Acc Chem Res 14(7):210–217

    Article  CAS  Google Scholar 

  7. Cruz-Cabeza AJ, Schreyer A, Pitt WR (2010) J Comput Aided Mol Des 24:575–586

    Article  CAS  Google Scholar 

  8. Claisen L (1896) Liebigs Ann Chem 291:25–137

    Article  CAS  Google Scholar 

  9. Seckarova P, Marek R, Malioakova K, Kolehmainen E, Hockova D, Hocek M, Sklenar V (2004) Tetrahedron Lett 45:6259–6263

    Article  CAS  Google Scholar 

  10. Katritzky AR, Hall CD, El-Gendy BEM, Draghici B (2010) J Comput Aided Mol Des 24:475–484

    Article  CAS  Google Scholar 

  11. Cook AG (1998) Enamines, 2nd ed. Marcel Dekker, New York

  12. Reichardt C (1979) Solvent effects in organic chemistry. Verlag Chemie, Weinheim, Germany, New York

    Google Scholar 

  13. Galstyan G, Knapp EW (2012) J Phys Chem A 116:6885–6893

    Article  CAS  Google Scholar 

  14. Takasuka M, Saito T, Nakai H (1996) Vib Spectrosc 13:65–74

    Article  CAS  Google Scholar 

  15. Lu J, Han B, Yan H (1999) J Supercrit Fluids 15:135–143

    Article  CAS  Google Scholar 

  16. Jios JL, Duddeck H (2000) Magn Reson Chem 38:512–514

    Article  CAS  Google Scholar 

  17. Iglesias E (2004) Curr Org Chem 8:1–24

    Article  CAS  Google Scholar 

  18. Egan W, Gunnarsson G, Bull TE, Forsen S (1977) J Am Chem Soc 99:4568–4572

    Article  CAS  Google Scholar 

  19. Hibbert F, Emsnley J (1990) Adv Phys Org Chem 26:255–379

    Article  CAS  Google Scholar 

  20. Kereselidze JA, Zarqua TS, Kikalishvili TJ, Churgulia EJ, Makaridze MC (2002) Russ Chem Rev 71:993–1003

    Article  CAS  Google Scholar 

  21. Cornago P, Claramunt RM, Bouissane L, Alkorta I, Elguero J (2008) Tetrahed 64:8089–8094

    Article  CAS  Google Scholar 

  22. Knorr L (1896) Liebigs Ann Chem 293:70–120

    Article  CAS  Google Scholar 

  23. Lacerda V Jr, Constantino MG, da Silva GVJ, Neto AC, Tormena CF (2007) J Mol Struct 828:54–58

    Article  CAS  Google Scholar 

  24. Pocker Y, Spyridis GT (2002) J Am Chem Soc 124:10373–10380

    Article  CAS  Google Scholar 

  25. Emsley J (1984) Struct Bond 57:147-191

    Google Scholar 

  26. Yogev A, Mazur Y (1967) J Org Chem 32:2162–2166

    Article  CAS  Google Scholar 

  27. Richa AM, Diaz GM, Nathan PJ (1996) Appl Spectrosc 50:1408–1412

    Article  Google Scholar 

  28. Sigalov M, Shainyan B, Krief P, Ushakov I, Chipanina N, Oznobikhina L (2011) J Mol Struct 1006:234–246

    Article  CAS  Google Scholar 

  29. Emsley J, Neville JF (1987) J Mol Struct 161:193–204

    Article  CAS  Google Scholar 

  30. Coussan S, Ferro Y, Trivella A, Rajzmann M, Roubin P, Wieczorek R, Manca C, Piecuch P, Kowalski K, Wloch M, Kucharski SA, Musial M (2006) J Phys Chem A 110:3920–3926

    Article  CAS  Google Scholar 

  31. Claramunt RM, Lopez C, Santa Maria MD, Sanz D, Elguero J (2006) Prog Nucl Magn Reson Spectrosc 49:169–206

    Article  CAS  Google Scholar 

  32. Boese R, Antipin MY, Blalser D, Lyssenko KA (1998) J Phys Chem B 102:8654–8660

    Article  CAS  Google Scholar 

  33. Moriyasu M, Kato A, Hashimoto Y (1986) J Chem Soc Perkin II II:515–520

    Article  Google Scholar 

  34. Chen XB, Fang WH, Phillips DL (2006) J Phys Chem A 110:4434–4441

    Article  CAS  Google Scholar 

  35. Karabulut S, Namli H, Mella M (2011) Vib Spec 57:294–299

    Article  CAS  Google Scholar 

  36. Raczynska ED, Kosinska W (2005) Chem Rev 105:3561–3612

    Article  CAS  Google Scholar 

  37. Yaylayan VA, Ismail AA, Mandeville S (1993) Carbohydr Res 248:355–360

    Article  CAS  Google Scholar 

  38. Moriyasu M, Kato A, Hashimoto Y (1988) Bull Chem Soc Jpn 61:2955–2956

    Article  CAS  Google Scholar 

  39. Mills SG, Beak P (1985) J Org Chem 50:1216–1224

    Article  CAS  Google Scholar 

  40. Majumdar P, Mohanta P, Behera RK, Behera AK (2013) Synt Comm1 43:899–914

    Article  CAS  Google Scholar 

  41. Cremlyn RJ, Osborne AG, Warmsley JF (1996) Spectrochim Acta A 52:1433–1454

    Article  Google Scholar 

  42. Karabulut S, Namlı H (2012) J Mol Struct 1024:151–155

    Article  CAS  Google Scholar 

  43. Gaussian 03, Revision C.02, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery Jr JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, J Mol ModelPetersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian Inc, Wallingford, CT, USA

  44. Hehre WJ, Radom L, Schleyer PvR, Pople JA (1986) Ab initio molecular theory. Wiley, New York

    Google Scholar 

  45. Jensen F (1999) Introduction to computational chemistry. John Wiley & Sons, London

    Google Scholar 

  46. Parr RG, Yang W (1989) Density functional theory of atoms and molecules. Oxford University Press, New York

    Google Scholar 

  47. Lee C, Yang W, Parr RG (1988) Phys Rev 37:785–789

    Article  CAS  Google Scholar 

  48. Becke AD (1988) Phys Rev B 38:3098–3100

    CAS  Google Scholar 

  49. Moller C, Plesset MS (1934) Phys Rev 46:618–622

    Article  CAS  Google Scholar 

  50. Cremer D (1998) In: Schleyer PvR (ed) Encyclopedia of computational chemistry. John Wiley and Sons, New York

    Google Scholar 

  51. Barone V, Cossi M (1998) J Phys Chem A 102:1995–2001

    Article  CAS  Google Scholar 

  52. Ellingson BA, Skillman AG, Nicholls A (2010) J Comput Aided Mol Des 24:335–342

    Article  CAS  Google Scholar 

  53. Soteras I, Orozco M, Luque FJ (2010) J Comput Aided Mol Des 24:281–291

    Article  CAS  Google Scholar 

  54. Klimovic PV, Mobley DL (2010) J Comput Aided Mol Des 24:307–316

    Article  Google Scholar 

  55. Riberio RF, Marenich AV, Cramer CJ, Truhlar DG (2010) J Comput Aided Mol Des 24:317–333

    Article  Google Scholar 

  56. Kast SM, Heil J, Güssregen S, Schmidt KF (2010) J Comput Aided Mol Des 24:343–353

    Article  CAS  Google Scholar 

  57. Klamt A, Diedenhofen M (2010) J Comput Aided Mol Des 24:357–360

    Article  CAS  Google Scholar 

  58. Meunier A, Truchon JF (2010) J Comput Aided Mol Des 24:361–372

    Article  CAS  Google Scholar 

  59. Purisima EO, Corbeil CR, Sulea T (2010) J Comput Aided Mol Des 24:373–383

    Article  CAS  Google Scholar 

  60. Nicholls A, Wlodek S, Grant JA (2010) J Comput Aided Mol Des 24:293–306

    Article  CAS  Google Scholar 

  61. Geballe MT, Skillman AG, Nicholls A, Guthrie JP, Taylor PJ (2010) J Comput Aided Mol Des 24:259–279

    Article  CAS  Google Scholar 

  62. Dunning TH Jr (1989) J Chem Phys 90:1007–1023

    Article  CAS  Google Scholar 

  63. Lu J, Han B, Yan H (1999) J Supercr Fl 15:135–143

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sedat Karabulut.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karabulut, S., Namli, H. & Leszczynski, J. Detection of tautomer proportions of dimedone in solution: a new approach based on theoretical and FT-IR viewpoint. J Comput Aided Mol Des 27, 681–688 (2013). https://doi.org/10.1007/s10822-013-9669-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-013-9669-z

Keywords

Navigation