Skip to main content
Log in

Systematic mining of analog series with related core structures in multi-target activity space

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

We have aimed to systematically extract analog series with related core structures from multi-target activity space to explore target promiscuity of closely related analogous. Therefore, a previously introduced SAR matrix structure was adapted and further extended for large-scale data mining. These matrices organize analog series with related yet distinct core structures in a consistent manner. High-confidence compound activity data yielded more than 2,300 non-redundant matrices capturing 5,821 analog series that included 4,288 series with multi-target and 735 series with multi-family activities. Many matrices captured more than three analog series with activity against more than five targets. The matrices revealed a variety of promiscuity patterns. Compound series matrices also contain virtual compounds, which provide suggestions for compound design focusing on desired activity profiles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Wermuth CG (ed) (2008) The practice of medicinal chemistry, 3rd edn. Academic Press, San Diego

  2. Agrafiotis DK, Shemanarev M, Connolly PJ, Farnum M, Lobanov VS (2007) SAR maps: a new SAR visualization technique for medicinal chemists. J Med Chem 50(24):5926–5937

    Article  CAS  Google Scholar 

  3. Wassermann AM, Bajorath J (2012) Directed R-group combination graph: a methodology to uncover structure–activity relationship patterns in series of analogs. J Med Chem 55(3):1215–1226

    Article  CAS  Google Scholar 

  4. Cho SJ, Sun Y (2008) Visual exploration of structure–activity relationship using maximum common framework. J Comput Aided Mol Des 22(8):571–578

    Article  CAS  Google Scholar 

  5. Schuffenhauer A, Ertl P, Roggo S, Wetzel S, Koch MA, Waldmann H (2007) The scaffold tree—visualization of the scaffold universe by hierarchical scaffold classification. J Chem Inf Model 47(1):47–58

    Article  CAS  Google Scholar 

  6. Agrafiotis DK, Wiener JJ (2010) Scaffold explorer: an interactive tool for organizing and mining structure–activity data spanning multiple chemotypes. J Med Chem 53(13):5002–5011

    Article  CAS  Google Scholar 

  7. Gupta-Ostermann D, Hu Y, Bajorath J (2012) Introducing the LASSO graph for compound data set representation and structure–activity relationship analysis. J Med Chem 55(11):5546–5553

    Article  CAS  Google Scholar 

  8. Wawer M, Lounkine E, Wassermann AM, Bajorath J (2010) Data structures and computational tools for the extraction of SAR information from large compound sets. Drug Discov Today 15(15–16):631–639

    Google Scholar 

  9. Wassermann AM, Haebel P, Weskamp N, Bajorath J (2012) SAR matrices: automated extraction of information-rich SAR tables from large compound data sets. J Chem Inf Model 52(7):1769–1776

    Article  CAS  Google Scholar 

  10. Kenny PW (2005) Sadowski J (2005) Structure modification in chemical databases. In: Oprea TI (ed) Chemoinformatics in drug discovery. Wiley-VCH, Weinheim, Germany, pp 271–285

    Chapter  Google Scholar 

  11. Hussain J, Rea C (2010) Computationally efficient algorithm to identify matched molecular pairs (MMPs) in large data sets. J Chem Inf Model 50(3):339–348

    Article  CAS  Google Scholar 

  12. Knight ZA, Lin H, Shokat KM (2010) Targeting the cancer kinome through polypharmacology. Nat Rev Cancer 10(2):130–137

    Article  CAS  Google Scholar 

  13. Paolini GV, Shapland RH, van Hoorn WP, Mason JS, Hopkins AL (2006) Global mapping of pharmacological space. Nat Biotechnol 24(7):805–815

    Article  CAS  Google Scholar 

  14. Hu Y, Bajorath J (2013) Compound promiscuity: what can we learn from current data? Drug Discov Today 18(13–14):644–650

    Article  CAS  Google Scholar 

  15. Boran AD, Iyengar R (2010) Systems approaches to polypharmacology and drug discovery. Curr Opin Drug Discov Dev 13(3):297–309

    CAS  Google Scholar 

  16. Wawer M, Bajorath J (2011) Local structural changes, global data views: graphical substructure–activity relationship trailing. J Med Chem 54(8):2944–2951

    Article  CAS  Google Scholar 

  17. Bemis GW, Murcko MA (1996) The properties of known drugs. 1. Molecular frameworks. J Med Chem 39(15):2887–2893

    Article  CAS  Google Scholar 

  18. Xu YJ, Johnson M (2002) Using molecular equivalence numbers to visually explore structure features that distinguish chemical libraries. J Chem Inf Comput Sci 42(4):912–926

    Article  CAS  Google Scholar 

  19. OEChem TKV (2013) April, Open Eye Scientific Software Inc, Santa Fe, New Mexico

  20. OEDepict TKV (2013) April, Open Eye Scientific Software Inc, Santa Fe, New Mexico

  21. Gaulton A, Bellis LJ, Bento AP, Chambers J, Davies M, Hersey A, Light Y, McGlinchey S, Michalovich D, Al-Lazikani B, Overington JP (2012) ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic Acids Res 40:D1100–D1107

    Article  CAS  Google Scholar 

  22. Knox C, Law V, Jewison T, Liu P, Ly S, Frolkis A, Pon A, Banco K, Mak C, Neveu V, Djoumbou Y, Eisner R, Guo AC, Wishart DS (2011) DrugBank 3.0: a comprehensive resource for ‘omics’ research on drugs. Nucleic Acids Res 40:D1035–D1041

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Bajorath.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gupta-Ostermann, D., Hu, Y. & Bajorath, J. Systematic mining of analog series with related core structures in multi-target activity space. J Comput Aided Mol Des 27, 665–674 (2013). https://doi.org/10.1007/s10822-013-9671-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-013-9671-5

Keywords

Navigation