Skip to main content
Log in

Molecular insight into γ–γ tubulin lateral interactions within the γ-tubulin ring complex (γ-TuRC)

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

γ-tubulin is essential for the nucleation and organization of mitotic microtubules in dividing cells. It is localized at the microtubule organizing centers and mitotic spindle fibres. The most well accepted hypothesis for the initiation of microtubule polymerization is that α/β-tubulin dimers add onto a γ-tubulin ring complex (γTuRC), in which adjacent γ-tubulin subunits bind to the underlying non-tubulin components of the γTuRC. This template thus determines the resulting microtubule lattice. In this study we use molecular modelling and molecular dynamics simulations, combined with computational MM-PBSA/MM-GBSA methods, to determine the extent of the lateral atomic interaction between two adjacent γ-tubulins within the γTuRC. To do this we simulated a γ–γ homodimer for 10 ns and calculated the ensemble average of binding free energies of −107.76 kcal/mol by the MM-PBSA method and of −87.12 kcal/mol by the MM-GBSA method. These highly favourable binding free energy values imply robust lateral interactions between adjacent γ-tubulin subunits in addition to their end-interactions longitudinally with other proteins of γTuRC. Although the functional reconstitution of γ-TuRC subunits and their stepwise in vitro assembly from purified components is not yet feasible, we nevertheless wanted to recognize hotspot amino acids responsible for key γ–γ interactions. Our free energy decomposition data from converting a compendium of amino acid residues identified an array of hotspot amino acids. A subset of such mutants can be expressed in vivo in living yeast. Because γTuRC is important for the growth of yeast, we could test whether this subset of the hotspot mutations support growth of yeast. Consistent with our model, γ-tubulin mutants that fall into our identified hotspot do not support yeast growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Oakley BR, Oakley CE, Yoon Y, Jung MK (1990) γ-Tubulin is a component of the spindle pole body that is essential for microtubule function in Aspergillus nidulans. Cell 61(7):1289–1301

    Article  CAS  Google Scholar 

  2. Zheng Y, Jung MK, Oakley BR (1991) γ-Tubulin is present in Drosophila melanogaster and Homo sapiens and is associated with the centrosome. Cell 65(5):817–823

    Article  CAS  Google Scholar 

  3. Stearns T, Evans L, Kirschner M (1991) γ-Tubulin is a highly conserved component of the centrosome. Cell 65(5):825–836

    Article  CAS  Google Scholar 

  4. Horio T, Uzawa S, Jung MK, Oakley BR, Tanaka K, Yanagida M (1991) The fission yeast gamma-tubulin is essential for mitosis and is localized at microtubule organizing centers. J Cell Sci 99(4):693–700

    CAS  Google Scholar 

  5. Joshi HC, Palacios MJ, McNamara L, Cleveland DW (1992) γ-Tubulin is a centrosomal protein required for cell cycle-dependent microtubule nucleation. Nature 365:80–83

    Article  Google Scholar 

  6. Joshi HC (1993) γ-Tubulin: the hub of cellular microtubule assemblies. BioEssays 15(10):637–643

    Article  CAS  Google Scholar 

  7. Oakley CE, Oakley BR (1989) Identification of γ-tubulin, a new member of the tubulin superfamily encoded by mipA gene of Aspergillus nidulans. Nature 338:662–664

    Article  CAS  Google Scholar 

  8. Sui H, Downing KH (2010) Structural basis of interprotofilament interaction and lateral deformation of microtubules. Structure 18(8):1022–1031

    Article  CAS  Google Scholar 

  9. Rice LM, Montabana EA, Agard DA (2008) The lattice as allosteric effector: structural studies of αβ-and γ-tubulin clarify the role of GTP in microtubule assembly. Proc Natl Acad Sci 105(14):5378–5383

    Article  CAS  Google Scholar 

  10. Wilson EB (1928) The cell in development and heredity, 3rd edn. The Macmillan Co., New York

  11. Li Q, Joshi HC (1995) Gamma-tubulin is a minus end-specific microtubule binding protein. J Cell Biol 131(1):207–214

    Article  CAS  Google Scholar 

  12. Oegema K, Wiese C, Martin OC, Milligan RA, Iwamatsu A, Mitchison TJ, Zheng Y (1999) Characterization of two related Drosophila γ-tubulin complexes that differ in their ability to nucleate microtubules. J Cell Biol 144(4):721–733

    Article  CAS  Google Scholar 

  13. Zheng Y, Wong ML, Alberts B, Mitchison T (1995) Nucleation of microtubule assembly by a gamma-tubulin-containing ring complex. Nature 378(6557):578–583

    Article  CAS  Google Scholar 

  14. Gohlke H, Case DA (2004) Converging free energy estimates: MM-PB (GB) SA studies on the protein–protein complex Ras-Raf. J Comput Chem 25(2):238–250

    Article  CAS  Google Scholar 

  15. Gohlke H, Kiel C, Case DA (2003) Insights into protein–protein binding by binding free energy calculation and free energy decomposition for the Ras-Raf and Ras–RalGDS complexes. J Mol Biol 330(4):891–913

    Article  CAS  Google Scholar 

  16. Zoete V, Meuwly M, Karplus M (2005) Study of the insulin dimerization: binding free energy calculations and per-residue free energy decomposition. Proteins Struct Funct Bioinf 61(1):79–93

    Article  CAS  Google Scholar 

  17. Michalik L, Zoete V, Krey G, Grosdidier A, Gelman L, Chodanowski P, Feige JN, Desvergne B, Wahli W, Michielin O (2007) Combined simulation and mutagenesis analyses reveal the involvement of key residues for peroxisome proliferator-activated receptorα helix 12 dynamic behavior. J Biol Chem 282(13):9666–9677

    Article  CAS  Google Scholar 

  18. Stites WE (1997) Protein-protein interactions: interface structure, binding thermodynamics, and mutational analysis. Chem Rev 97(5):1233–1250

    Article  CAS  Google Scholar 

  19. Zoete V, Michielin O (2007) Comparison between computational alanine scanning and per-residue binding free energy decomposition for protein–protein association using MM-GBSA: application to the TCR-p-MHC complex. Proteins Struct Funct Bioinf 67(4):1026–1047

    Article  CAS  Google Scholar 

  20. Kollman PA, Massova I, Reyes C, Kuhn B, Huo S, Chong L, Lee M, Lee T, Duan Y, Wang W (2000) Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Acc Chem Res 33(12):889–897

    Article  CAS  Google Scholar 

  21. Onufriev A, Bashford D, Case DA (2000) Modification of the generalized Born model suitable for macromolecules. J Phys Chem B 104(15):3712–3720

    Article  CAS  Google Scholar 

  22. Srinivasan J, Cheatham TE, Cieplak P, Kollman PA, Case DA (1998) Continuum solvent studies of the stability of DNA, RNA, and phosphoramidate-DNA helices. J Am Chem Soc 120(37):9401–9409

    Article  CAS  Google Scholar 

  23. Tsui V, Case DA (2000) Theory and applications of the generalized Born solvation model in macromolecular simulations. Biopolymers 56(4):275–291

    Article  CAS  Google Scholar 

  24. Lafont V, Schaefer M, Stote RH, Altschuh D, Dejaegere A (2007) Protein–protein recognition and interaction hot spots in an antigen–antibody complex: free energy decomposition identifies “efficient amino acids”. Proteins Struct Funct Bioinf 67(2):418–434

    Article  CAS  Google Scholar 

  25. Hess B, Kutzner C, Van Der Spoel D, Lindahl E (2008) GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 4(3):435–447

    Article  CAS  Google Scholar 

  26. Berendsen H, Postma J, Van Gunsteren W, Hermans J (1981) Intermolecular Forces, ed. B Pullman, Reidel, Dordrecht 331

  27. Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N· log (N) method for Ewald sums in large systems. J Chem Phys 98(12):10089–10092

    Article  CAS  Google Scholar 

  28. Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) A smooth particle mesh Ewald method. J Chem Phys 103(19):8577–8593

    Article  CAS  Google Scholar 

  29. Ryckaert J-P, Ciccotti G, Berendsen HJ (1977) Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of < i > n </i > -alkanes. J Comput Phys 23(3):327–341

    Article  CAS  Google Scholar 

  30. Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26(2):283–291

    Article  CAS  Google Scholar 

  31. Ramachandran G, Ct Ramakrishnan, Sasisekharan V (1963) Stereochemistry of polypeptide chain configurations. J Mol Biol 7(1):95–99

    Article  CAS  Google Scholar 

  32. Colovos C, Yeates TO (1993) Verification of protein structures: patterns of nonbonded atomic interactions. Protein Sci 2(9):1511–1519

    Article  CAS  Google Scholar 

  33. Eisenberg D, Lüthy R, Bowie JU (1997) VERIFY3D: assessment of protein models with three-dimensional profiles. Methods Enzymol 277:396

    Article  CAS  Google Scholar 

  34. Case DA, Cheatham TE, Darden T, Gohlke H, Luo R, Merz KM, Onufriev A, Simmerling C, Wang B, Woods RJ (2005) The Amber biomolecular simulation programs. J Comput Chem 26(16):1668–1688

    Article  CAS  Google Scholar 

  35. Pearlman DA, Case DA, Caldwell JW, Ross WS, Cheatham TE III, DeBolt S, Ferguson D, Seibel G, Kollman P (1995) AMBER, a package of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate the structural and energetic properties of molecules. Comput Phys Commun 91(1):1–41

    Article  CAS  Google Scholar 

  36. Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA (1995) A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J Am Chem Soc 117(19):5179–5197

    Article  CAS  Google Scholar 

  37. Hornak V, Abel R, Okur A, Strockbine B, Roitberg A, Simmerling C (2006) Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins Struct Funct Bioinf 65(3):712–725

    Article  CAS  Google Scholar 

  38. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79(2):926–935

    Article  CAS  Google Scholar 

  39. Berendsen HJ, Postma JPM, van Gunsteren WF, DiNola A, Haak J (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81(8):3684–3690

    Article  CAS  Google Scholar 

  40. Honig B, Nicholls A (1995) Classical electrostatics in biology and chemistry. Science, New Series 268:1144–1149

  41. Massova I, Kollman PA (2000) Combined molecular mechanical and continuum solvent approach (MM-PBSA/GBSA) to predict ligand binding. Perspect Drug Discovery Des 18(1):113–135

    Article  CAS  Google Scholar 

  42. Sitkoff D, Sharp KA, Honig B (1994) Accurate calculation of hydration free energies using macroscopic solvent models. J Phys Chem 98(7):1978–1988

    Article  CAS  Google Scholar 

  43. Guo J, Wang X, Sun H, Liu H, Yao X (2012) The molecular basis of IGF-II/IGF2R recognition: a combined molecular dynamics simulation, free-energy calculation and computational alanine scanning study. J Mol Model 18(4):1421–1430

    Article  CAS  Google Scholar 

  44. Zoete V, Irving M, Michielin O (2010) MM–GBSA binding free energy decomposition and T cell receptor engineering. J Mol Recognit 23(2):142–152

    Article  CAS  Google Scholar 

  45. Hendrickson TW, Yao J, Bhadury S, Corbett AH, Joshi HC (2001) Conditional mutations in γ-tubulin reveal its involvement in chromosome segregation and cytokinesis. Mol Biol Cell 12(8):2469–2481

    Article  CAS  Google Scholar 

  46. Maundrell K (1990) nmt1 of fission yeast. A highly transcribed gene completely repressed by thiamine. J Biol Chem 265(19):10857–10864

    CAS  Google Scholar 

  47. Maundrell K (1993) Thiamine-repressible expression vectors pREP and pRIP for fission yeast. Gene 123(1):127–130

    Article  CAS  Google Scholar 

  48. Paluh J, Clayton D (1996) A functional dominant mutation in Schizosaccharomyces pombe RNase MRP RNA affects nuclear RNA processing and requires the mitochondrial-associated nuclear mutation ptp1-1 for viability. EMBO J 15(17):4723

    CAS  Google Scholar 

  49. Horio T, Oakley BR (1994) Human gamma-tubulin functions in fission yeast. J Cell Biol 126(6):1465–1473

    Article  CAS  Google Scholar 

  50. Tsai CJ, Nussinov R (1997) Hydrophobic folding units at protein–protein interfaces: implications to protein folding and to protein–protein association. Protein Sci 6(7):1426–1437

    Article  CAS  Google Scholar 

  51. Davis SJ, Davies EA, Tucknott MG, Jones EY, Van Der Merwe PA (1998) The role of charged residues mediating low affinity protein–protein recognition at the cell surface by CD2. Proc Natl Acad Sci 95(10):5490–5494

    Article  CAS  Google Scholar 

  52. Wallace AC, Laskowski RA, Thornton JM (1995) LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng 8(2):127–134

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work was supported partially by funding from the United States of America National Institutes of Health R01-CA095317 (H.C. Joshi) and NRSA-GM18037 (T.W. Hendrickson). The authors are thankful to Prof. B. Jayaram and the staff of the SCFBio lab at IIT-Delhi for providing the access to their supercomputing facility to perform MD simulation. Authors are also thankful to Jaypee University of Information Technology for providing fellowship to Miss. Charu Suri.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pradeep Kumar Naik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suri, C., Hendrickson, T.W., Joshi, H.C. et al. Molecular insight into γ–γ tubulin lateral interactions within the γ-tubulin ring complex (γ-TuRC). J Comput Aided Mol Des 28, 961–972 (2014). https://doi.org/10.1007/s10822-014-9779-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-014-9779-2

Keywords

Navigation