Skip to main content
Log in

Exploring the dynamics and interaction of a full ErbB2 receptor and Trastuzumab-Fab antibody in a lipid bilayer model using Martini coarse-grained force field

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Coarse grained (CG) modeling has been applied to study the influence of the Trastuzumab monoclonal antibody on the structure and dynamics of the full ErbB2 receptor dimer, including the lipid bilayer. The usage of CG models to study such complexes is almost mandatory, at present, due to the large size of the whole system. We will show that the Martini model performs satisfactorily well, giving results well-matched with those obtained by atomistic models as well as with the experimental information existing on homolog receptors. For example, the extra and intracellular domains approach the bilayer surface in both the monomer and dimer cases. The Trastuzumab-Fab hinders the interaction of the receptors with the lipid bilayer. Another interesting effect of the antibody is the disruption of the antiparallel arrangement of the juxtamembrane segments in the dimer case. These findings might help to understand the effect of the antibody on the receptor bioactivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Patel R, Leung HY (2012) Curr Pharm Des 18(19):2672

    Article  CAS  Google Scholar 

  2. Baselga J, Swain SM (2009) Nat Rev Cancer 9(7):463

    Article  CAS  Google Scholar 

  3. Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL (1987) Science 235(4785):177

    Article  CAS  Google Scholar 

  4. Baselga J, Tripathy D, Mendelsohn J, Baughman S, Benz CC, Dantis L, Sklarin NT, Seidman AD, Hudis CA, Moore J, Rosen PP, Twaddell T, Henderson IC, Norton L (1996) J Clin Oncol 14(3):737

    CAS  Google Scholar 

  5. Carter P, Presta L, Gorman CM, Ridgway JBB, Henner D, Wong WLT, Rowland AM, Kotts C, Carver ME, Shepard HM (1992) Proc Natl Acad Sci USA 89(10):4285

    Article  CAS  Google Scholar 

  6. Vogel CL, Cobleigh MA, Tripathy D, Gutheil JC, Harris LN, Fehrenbacher L, Slamon DJ, Murphy M, Novotny WF, Burchmore M, Shak S, Stewart SJ, Press M (2002) J Clin Oncol 20(3):719

    Article  CAS  Google Scholar 

  7. Nahta R (2012) Curr Med Chem 19(7):1065

    Article  CAS  Google Scholar 

  8. Nahta R, Esteva FJ (2006) Cancer Lett 232(2):123

    Article  CAS  Google Scholar 

  9. Nahta R, Esteva FJ (2007) Oncogene 26(25):3637

    Article  CAS  Google Scholar 

  10. Cho HS, Mason K, Ramyar KX, Stanley AM, Gabelli SB, Denney DW, Leahy DJ (2003) Nature 421(6924):756

    Article  CAS  Google Scholar 

  11. Franco-Gonzalez JF, Cruz VL, Ramos J, Martinez-Salazar J (2013) J Mol Model 19(3):1227

    Article  CAS  Google Scholar 

  12. Fuentes G, Scaltriti M, Baselga J, Verma CS (2011) Breast Cancer Res 13:R54

  13. Cho HS, Leahy DJ (2002) Science 297(5585):1330

    Article  CAS  Google Scholar 

  14. Du Y, Yang H, Xu Y, Cang X, Luo C, Mao Y, Wang Y, Qin G, Luo X, Jiang H (2012) J Am Chem Soc 134(15):6720

    Article  CAS  Google Scholar 

  15. Leahy DJ (2004) Cell Surf Recept 68:1

    Article  CAS  Google Scholar 

  16. Liu P, Bouyain S, Eigenbrot C, Leahy DJ (2012) Protein Sci 21(1):152

    Article  CAS  Google Scholar 

  17. Liu P, Cleveland TE, Bouyain S, Byrne PO, Longo PA, Leahy DJ (2012) Proc Natl Acad Sci USA 109(27):10861

    Article  CAS  Google Scholar 

  18. Beevers AJ, Kukol A (2006) J Mol Biol 361(5):945

    Article  CAS  Google Scholar 

  19. Bocharov EV, Mineev KS, Goncharuk MV, Arseniev AS (2012) Biochim Biophys Acta Biomembr 1818(9):2158

    Article  CAS  Google Scholar 

  20. Bocharov EV, Mineev KS, Volynsky PE, Ermolyuk YS, Tkach EN, Sobol AG, Chupin VV, Kirpichnikov MP, Efremov RG, Arseniev AS (2008) J Biol Chem 283(11):6950

    Article  CAS  Google Scholar 

  21. Garnier N, Crouzy S, Genest M (2003) J Biomol Struct Dyn 21(2):179

    Article  CAS  Google Scholar 

  22. Garnier N, Genest D, Duneau JP, Genest M (1997) Biopolymers 42(2):157

    Article  CAS  Google Scholar 

  23. Garnier N, Genest D, Genest M (1996) Biophys Chem 58(3):225

    Article  CAS  Google Scholar 

  24. Mineev KS, Bocharov EV, Pustovalova YE, Bocharova OV, Chupin VV, Arseniev AS (2010) J Mol Biol 400(2):231

    Article  CAS  Google Scholar 

  25. Mineev KS, Bocharov EV, Volynsky PE, Goncharuk MV, Tkach EN, Ermolyuk YS, Schulga AA, Chupin VV, Maslennikov IV, Efremov RG, Arseniev AS (2011) Acta naturae 3(2):90

    CAS  Google Scholar 

  26. Prakash A, Janosi L, Doxastakis M (2010) Biophys J 99(11):3657

    Article  CAS  Google Scholar 

  27. Soumana OS, Garnier N, Genest M (2007) Eur Biophys J 36(8):1071

    Article  Google Scholar 

  28. Soumana OS, Garnier N, Genest M (2008) Eur Biophys J 37(6):851

    Article  Google Scholar 

  29. Lu P-C, Zhou C-F, Chen J, Liu P-G, Wang K-R, Mao W-J, Li H-Q, Yang Y, Xiong J, Zhu H-L (2010) Bioorg Med Chem 18(1):314

    Article  Google Scholar 

  30. Mustafa M, Mirza A, Kannan N (2011) Proteins Struct Funct Bioinform 79(1):99

    Article  CAS  Google Scholar 

  31. Papakyriakou A, Vourloumis D, Tzortzatou-Stathopoulou F, Karpusas M (2009) Proteins Struct Funct Bioinform 76(2):375

    Article  CAS  Google Scholar 

  32. Qiu C, Tarrant MK, Choi SH, Sathyamurthy A, Bose R, Banjade S, Pal A, Bornmann WG, Lemmon MA, Cole PA, Leahy DJ (2008) Structure 16(3):460

    Article  CAS  Google Scholar 

  33. Qiu K-M, Wang H-H, Wang L-M, Luo Y, Yang X-H, Wang X-M, Zhu H-L (2012) Bioorg Med Chem 20(6):2010

    Article  CAS  Google Scholar 

  34. Shi F, Telesco SE, Liu Y, Radhakrishnan R, Lemmon MA (2010) Proc Natl Acad Sci USA 107(17):7692

    Article  CAS  Google Scholar 

  35. Shin AJ, Telesco SE, Choi S-H, Lemmon MA, Radhakrishnan R (2011) Biochem J 436:241

    Article  Google Scholar 

  36. Telesco SE, Radhakrishnan R (2009) Biophys J 96(6):2321

    Article  CAS  Google Scholar 

  37. Telesco SE, Shih AJ, Jia F, Radhakrishnan R (2011) Mol BioSyst 7(6):2066

    Article  CAS  Google Scholar 

  38. Yun C-H, Mengwasser KE, Toms AV, Woo MS, Greulich H, Wong K-K, Meyerson M, Eck MJ (2008) Proc Natl Acad Sci USA 105(6):2070

    Article  CAS  Google Scholar 

  39. Zhang X, Gureasko J, Shen K, Cole PA, Kuriyan J (2006) Cell 125(6):1137

    Article  CAS  Google Scholar 

  40. Zhang X, Pickin KA, Bose R, Jura N, Cole PA, Kuriyan J (2007) Nature 450(7170):741

    Article  CAS  Google Scholar 

  41. Kastner J, Loeffler HH, Roberts SK, Martin-Fernandez ML, Winn MD (2009) J Struct Biol 167(2):117

    Article  Google Scholar 

  42. Martin-Fernandez ML (2012) Biochem Soc Trans 40:184

    Article  CAS  Google Scholar 

  43. Roberts SK, Tynan CJ, Winn M, Martin-Fernandez ML (2012) Biochem Soc Trans 40:189

    Article  CAS  Google Scholar 

  44. Bagossi P, Horvath G, Vereb G, Szollosi J, Tozser J (2005) Biophys J 88(2):1354

    Article  CAS  Google Scholar 

  45. Arkhipov A, Shan Y, Das R, Endres NF, Eastwood MP, Wemmer DE, Kuriyan J, Shaw DE (2013) Cell 152(3):557

    Article  CAS  Google Scholar 

  46. Marrink SJ, Tieleman DP (2013) Chem Soc Rev 42(16):6801

    Article  CAS  Google Scholar 

  47. Marrink SJ, Risselada HJ, Yefimov S, Tieleman DP, de Vries AH (2007) J Phys Chem B 111(27):7812

    Article  CAS  Google Scholar 

  48. Monticelli L, Kandasamy SK, Periole X, Larson RG, Tieleman DP, Marrink SJ (2008) J Chem Theor Comput 4(5):819

    Article  CAS  Google Scholar 

  49. Hall BA, Chetwynd AP, Sansom MSP (2011) Biophys J 100(8):1940

    Article  CAS  Google Scholar 

  50. Khalfa A, Tarek M (2010) J Phys Chem B 114(8):2676

    Article  CAS  Google Scholar 

  51. Marrink SJ, de Vries AH, Tieleman DP (2009) Biochim Biophys Acta. Biomembr 1788(1):149

    Article  CAS  Google Scholar 

  52. Felipe Franco-Gonzalez J, Ramos J, Cruz VL, Martinez-Salazar J (2013) J Mol Model 19(2):931

    Article  Google Scholar 

  53. Vicente-Alique E, Nunez-Ramirez R, Francisco Vega J, Hu P, Martinez-Salazar J (2011) Eur Biophys J 40(7):835

    Article  CAS  Google Scholar 

  54. Burgess AW, Cho HS, Eigenbrot C, Ferguson KM, Garrett TPJ, Leahy DJ, Lemmon MA, Sliwkowski MX, Ward CW, Yokoyama S (2003) Mol Cell 12(3):541

    Article  CAS  Google Scholar 

  55. Ghosh R, Narasanna A, Wang SE, Liu S, Chakrabarty A, Balko JM, Gonzalez-Angulo AM, Mills GB, Penuel E, Winslow J, Sperinde J, Dua R, Pidaparthi S, Mukherjee A, Leitzel K, Kostler WJ, Lipton A, Bates M, Arteaga CL (2011) Cancer Res 71(5):1871

    Article  CAS  Google Scholar 

  56. Periole X, Cavalli M, Marrink S-J, Ceruso MA (2009) J Chem Theor Comput 5(9):2531

    Article  CAS  Google Scholar 

  57. Hess B, Kutzner C, van der Spoel D, Lindahl E (2008) J Chem Theor Comput 4(3):435

    Article  CAS  Google Scholar 

  58. Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) J Chem Phys 103(19):8577

    Article  CAS  Google Scholar 

  59. Berendsen HJC, Postma JPM, Vangunsteren WF, Dinola A, Haak JR (1984) J Chem Phys 81(8):3684

    Article  CAS  Google Scholar 

  60. Hess B, Bekker H, Berendsen HJC, Fraaije J (1997) J Comput Chem 18(12):1463

    Article  CAS  Google Scholar 

  61. Marrink SJ, de Vries AH, Mark AE (2004) J Phys Chem B 108(2):750

    Article  CAS  Google Scholar 

  62. Amadei A, Linssen ABM, Berendsen HJC (1993) Proteins Struct Funct Genet 17(4):412

    Article  CAS  Google Scholar 

  63. Amadei A, Linssen ABM, de Groot BL, van Aalten DMF, Berendsen HJC (1996) J Biomol Struct Dyn 13(4):615

    Article  CAS  Google Scholar 

  64. Siuda I, Thogersen L (2013) J Mol Model 19(11):4931

    Article  CAS  Google Scholar 

  65. Webb SED, Roberts SK, Needham SR, Tynan CJ, Rolfe DJ, Winn MD, Clarke DT, Barraclough R, Martin-Fernandez ML (2008) Biophys J 94(3):803

    Article  CAS  Google Scholar 

  66. Lu C, Mi L-Z, Grey MJ, Zhu J, Graef E, Yokoyama S, Springer TA (2010) Mol Cell Biol 30(22):5432

    Article  CAS  Google Scholar 

  67. Endres NF, Das R, Smith AW, Arkhipov A, Kovacs E, Huang Y, Pelton JG, Shan Y, Shaw DE, Wemmer DE, Groves JT, Kuriyan J (2013) Cell 152(3):543

    Article  CAS  Google Scholar 

  68. Jura N, Endres NF, Engel K, Deindl S, Das R, Lamers MH, Wemmer DE, Zhang X, Kuriyan J (2009) Cell 137(7):1293

    Article  Google Scholar 

  69. Choowongkomon K, Carlin CR, Sonnichsen FD (2005) J Biol Chem 280(25):24043

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study received financial support from the CICYT (projects MAT2009-12364 and MAT2012-36341). J.R. thanks to MINECO (Ministerio de Economía y Competitividad) the financial support through the Ramón y Cajal program, contract RYC-2011-09585. The authors thank the staff of the SGAI-CSIC (Secretaria General Adjunta de Informática) for technical support and computer time for the simulations. We are also grateful to Prof. Bagossi for sharing his atomistic model in PDB format.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor L. Cruz.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Franco-Gonzalez, J.F., Ramos, J., Cruz, V.L. et al. Exploring the dynamics and interaction of a full ErbB2 receptor and Trastuzumab-Fab antibody in a lipid bilayer model using Martini coarse-grained force field. J Comput Aided Mol Des 28, 1093–1107 (2014). https://doi.org/10.1007/s10822-014-9787-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-014-9787-2

Keywords

Navigation