Skip to main content

Advertisement

Log in

Creating and virtually screening databases of fluorescently-labelled compounds for the discovery of target-specific molecular probes

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Our group has recently demonstrated that virtual screening is a useful technique for the identification of target-specific molecular probes. In this paper, we discuss some of our proof-of-concept results involving two biologically relevant target proteins, and report the development of a computational script to generate large databases of fluorescence-labelled compounds for computer-assisted molecular design. The virtual screening of a small library of 1,153 fluorescently-labelled compounds against two targets, and the experimental testing of selected hits reveal that this approach is efficient at identifying molecular probes, and that the screening of a labelled library is preferred over the screening of base compounds followed by conjugation of confirmed hits. The automated script for library generation explores the known reactivity of commercially available dyes, such as NHS-esters, to create large virtual databases of fluorescence-tagged small molecules that can be easily synthesized in a laboratory. A database of 14,862 compounds, each tagged with the ATTO680 fluorophore was generated with the automated script reported here. This library is available for downloading and it is suitable for virtual ligand screening aiming at the identification of target-specific fluorescent molecular probes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Johnson I, Michelle TZS (eds) (2010) Molecular probes handbook: a guide to fluorescent probes and labeling technologies, 11th edn. Life Technologies Coorporation, USA

  2. Giepmans BN, Adams SR, Ellisman MH, Tsien RY (2006) The fluorescent toolbox for assessing protein location and function. Science (New York, NY) 312(5771):217–224. doi:10.1126/science.1124618

    Article  CAS  Google Scholar 

  3. Riggs J, Seiwald R, Burckhalter J, Downs CM, Metcalf T (1958) Isothiocyanate compounds as fluorescent labeling agents for immune serum. Am J Pathol 34(6):1081

    CAS  Google Scholar 

  4. Lazarides E, Weber K (1974) Actin antibody: the specific visualization of actin filaments in non-muscle cells. Proc Natl Acad Sci 71(6):2268–2272

    Article  CAS  Google Scholar 

  5. Sack U, Conrad K, Csernok E, Frank I, Hiepe F, Krieger T, Kromminga A, Von Landenberg P, Messer G, Witte T, Mierau R (2009) Autoantibody detection using indirect immunofluorescence on HEp-2 cells. Dtsch Med Wochenschr 134(24):1278–1282. doi:10.1055/s-0029-1225278

  6. Hoxha E, Harendza S, Zahner G, Panzer U, Steinmetz O, Fechner K, Helmchen U, Stahl RAK (2011) An immunofluorescence test for phospholipase-A2-receptor antibodies and its clinical usefulness in patients with membranous glomerulonephritis. Nephrol Dial Transplant 26(8):2526–2532. doi:10.1093/ndt/gfr247

    Article  CAS  Google Scholar 

  7. Kinders RJ, Hollingshead M, Lawrence S, Ji J, Tabb B, Bonner WM, Pommier Y, Rubinstein L, Evrard YA, Parchment RE, Tomaszewski J, Doroshow JH (2010) Development of a validated immunofluorescence assay for γH2AX as a pharmacodynamic marker of topoisomerase I inhibitor activity. Clin Cancer Res 16(22):5447–5457. doi:10.1158/1078-0432.ccr-09-3076

    Article  CAS  Google Scholar 

  8. Schmidt E, Zillikens D (2010) Modern diagnosis of autoimmune blistering skin diseases. Autoimmun Rev 10(2):84–89. doi:10.1016/j.autrev.2010.08.007

    Article  CAS  Google Scholar 

  9. Chames P, Van Regenmortel M, Weiss E, Baty D (2009) Therapeutic antibodies: successes, limitations and hopes for the future. Br J Pharmacol 157(2):220–233. doi:10.1111/j.1476-5381.2009.00190.x

    Article  CAS  Google Scholar 

  10. Ntziachristos V, Bremer C, Weissleder R (2003) Fluorescence imaging with near-infrared light: new technological advances that enable in vivo molecular imaging. Eur Radiol 13(1):195–208. doi:10.1007/s00330-002-1524-x

    Google Scholar 

  11. Hilderbrand SA, Weissleder R (2010) Near-infrared fluorescence: application to in vivo molecular imaging. Curr Opin Chem Biol 14(1):71–79. doi:10.1016/j.cbpa.2009.09.029

    Article  CAS  Google Scholar 

  12. Tung C-H, Lin Y, Moon WK, Weissleder R (2002) A receptor-targeted near-infrared fluorescence probe for in vivo tumor imaging. ChemBioChem 3(8):784–786. doi:10.1002/1439-7633(20020802)3:8<784:AID-CBIC784>3.0.CO;2-X

    Article  CAS  Google Scholar 

  13. Zhang Z, Achilefu S (2005) Design, synthesis and evaluation of near-infrared fluorescent pH indicators in a physiologically relevant range. Chem Commun 47:5887–5889. doi:10.1039/B512315A

    Article  Google Scholar 

  14. Weissleder R, Tung CH, Mahmood U, Bogdanov A Jr (1999) In vivo imaging of tumors with protease-activated near-infrared fluorescent probes. Nat Biotechnol 17(4):375–378. doi:10.1038/7933

    Article  CAS  Google Scholar 

  15. Messerli SM, Prabhakar S, Tang Y, Shah K, Cortes ML, Murthy V, Weissleder R, Breakefield XO, Tung CH (2004) A novel method for imaging apoptosis using a caspase-1 near-infrared fluorescent probe. Neoplasia 6(2):95–105

    Article  CAS  Google Scholar 

  16. Dadgar S, Ramjan Z, Floriano WB (2013) Paclitaxel Is an inhibitor and its boron dipyrromethene derivative is a fluorescent recognition agent for botulinum neurotoxin subtype A. J Med Chem 56(7):2791–2803

    Article  CAS  Google Scholar 

  17. Shah F, Mukherjee P, Gut J, Legac J, Rosenthal PJ, Tekwani BL, Avery MA (2011) Identification of novel malarial cysteine protease inhibitors using structure-based virtual screening of a focused cysteine protease inhibitor library. J Chem Inf Model 51(4):852–864. doi:10.1021/ci200029y

    Article  CAS  Google Scholar 

  18. Naylor E, Arredouani A, Vasudevan SR, Lewis AM, Parkesh R, Mizote A, Rosen D, Thomas JM, Izumi M, Ganesan A (2009) Identification of a chemical probe for NAADP by virtual screening. Nat Chem Biol 5(4):220–226

    Article  CAS  Google Scholar 

  19. Doman TN, McGovern SL, Witherbee BJ, Kasten TP, Kurumbail R, Stallings WC, Connolly DT, Shoichet BK (2002) Molecular docking and high-throughput screening for novel inhibitors of protein tyrosine phosphatase-1B. J Med Chem 45(11):2213–2221. doi:10.1021/jm010548w

    Article  CAS  Google Scholar 

  20. Kolb P, Rosenbaum DM, Irwin JJ, Fung JJ, Kobilka BK, Shoichet BK (2009) Structure-based discovery of β2-adrenergic receptor ligands. Proc Natl Acad Sci 106(16):6843–6848. doi:10.1073/pnas.0812657106

    Article  CAS  Google Scholar 

  21. De Graaf C, Kooistra AJ, Vischer HF, Katritch V, Kuijer M, Shiroishi M, Iwata S, Shimamura T, Stevens RC, De Esch IJP, Leurs R (2011) Crystal structure-based virtual screening for fragment-like ligands of the human histamine H 1 receptor. J Med Chem 54(23):8195–8206

    Article  Google Scholar 

  22. Floriano WB, Vaidehi N, Zamanakos G, Goddard WA (2004) HierVLS hierarchical docking protocol for virtual ligand screening of large-molecule databases. J Med Chem 47(1):56–71

    Article  CAS  Google Scholar 

  23. Dadgar S, Chowdhury M, Phenix C, Floriano WB (2014) Systematic discovery of novel fluorescent molecular probes targeting multiple non-orthosteric spatially distinct sites in BoNTA (in preparation)

  24. Kitchen DB, Decornez H, Furr JR, Bajorath J (2004) Docking and scoring in virtual screening for drug discovery: methods and applications. Nat Rev Drug Discov 3(11):935–949

    Article  CAS  Google Scholar 

  25. Meng X-Y, Zhang H-X, Mezei M, Cui M (2011) Molecular docking: a powerful approach for structure-based drug discovery. Curr Comput Aided Drug Des 7(2):146

    Article  CAS  Google Scholar 

  26. Scheffner M, Huibregtse JM, Vierstra RD, Howley PM (1993) The HPV-16 E6 and E6-AP complex functions as a ubiquitin-protein ligase in the ubiquitination of p53. Cell 75(3):495–505. doi:10.1016/0092-8674(93)90384-3

    Article  CAS  Google Scholar 

  27. Huibregtse JM, Scheffner M, Howley PM (1991) A cellular protein mediates association of p53 with the E6 oncoprotein of human papillomavirus types 16 or 18. EMBO J 10(13):4129

    CAS  Google Scholar 

  28. Scheffner M, Werness BA, Huibregtse JM, Levine AJ, Howley PM (1990) The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell 63(6):1129–1136. doi:10.1016/0092-8674(90)90409-8

    Article  CAS  Google Scholar 

  29. Sobel J, Tucker N, Sulka A, McLaughlin J, Maslanka S (2004) Foodborne botulism in the United States, 1990–2000. Emerg Infect Dis 10(9):1606

    Article  Google Scholar 

  30. Cai S, Singh BR, Sharma S (2007) Botulism diagnostics: from clinical symptoms to in vitro assays. Crit Rev Microbiol 33(2):109–125

    Article  CAS  Google Scholar 

  31. Arnon SS, Schechter R, Inglesby TV, Henderson DA, Bartlett JG, Ascher MS, Eitzen E, Fine AD, Hauer J, Layton M (2001) Botulinum toxin as a biological weapon. JAMA 285(8):1059–1070

    Article  CAS  Google Scholar 

  32. Jankovic J (2004) Botulinum toxin in clinical practice. J Neurol Neurosurg Psychiatry 75(7):951–957

    Article  CAS  Google Scholar 

  33. Münchau A, Bhatia K (2000) Regular review: uses of botulinum toxin injection in medicine today. Br Med J 320(7228):161

    Article  Google Scholar 

  34. Bolton E, Wang Y, Thiessen PA, Bryant SH (2008) PubChem: integrated platform of small molecules and biological activities. In: Wheeler RA, Spellmeyer DC (eds) Annual reports in computational chemistry, vol 4. American Chemical Society, Washington, DC

  35. Lipinski CA (2000) Drug-like properties and the causes of poor solubility and poor permeability. J Pharmacol Toxicol Methods 44(1):235–249. doi:10.1016/s1056-8719(00)00107-6

    Article  CAS  Google Scholar 

  36. Molecular Operating Environment (MOE) (2010) 2010.10 edn. Chemical Computing Group, Inc., Montreal, Quebec, Canada

  37. Gasteiger J, Marsili M (1980) Iterative partial equalization of orbital electronegativity—a rapid access to atomic charges. Tetrahedron 36:3219–3228. doi:10.1016/0040-4020(80)80168-2

    Article  CAS  Google Scholar 

  38. Halgren TA (1996) Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94. J Comput Chem 17(5–6):490–519

    Article  CAS  Google Scholar 

  39. Mujumdar RB, Ernst L, Mujumdar SR, Lewis CJ, Waggoner AS (1993) Cyanine dye labeling reagents: sulfoindocyanine succinimidyl esters. Bioconjug Chem 4:105–111

    Article  CAS  Google Scholar 

  40. Southwick P, Ernst L, Tauriello E (1990) Cyanine dye labeling reagents—carboxymethylindocyanine succinimidyl esters. Cytometry 430:418–430

    Article  Google Scholar 

  41. Brady GP, Stouten PF (2000) Fast prediction and visualization of protein binding pockets with PASS. J Comput Aided Mol Des 14:383–401

    Article  CAS  Google Scholar 

  42. PRISM (2013) 6.UPDATE for Windows* edn. GraphPad Software, La Jolla, California, USA

  43. Program ML (2007) MLSMR compounds. https://mli.nih.gov/mli/compound-repository/mlsmr-compounds/. Accessed June 2013 2013

  44. PubChem N (2011) PubChem3D release notes. http://pubchem.ncbi.nlm.nih.gov/release3d.html. Accessed June 2013

  45. Halgren T (1996) Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94. J Comput Chem 17:490–519

    Article  CAS  Google Scholar 

  46. Carta G, Knox AJ, Lloyd DG (2007) Unbiasing scoring functions: a new normalization and rescoring strategy. J Chem Inf Model 47(4):1564–1571. doi:10.1021/ci600471m

    Article  CAS  Google Scholar 

  47. Konstantinou-Kirtay C, Mitchell JB, Lumley JA (2007) Scoring functions and enrichment: a case study on Hsp90. BMC Bioinform 8:27. doi:10.1186/1471-2105-8-27

    Article  Google Scholar 

  48. Jacobsson M, Karlen A (2006) Ligand bias of scoring functions in structure-based virtual screening. J Chem Inf Model 46(3):1334–1343. doi:10.1021/ci050407t

    Article  CAS  Google Scholar 

  49. Pan Y, Huang N, Cho S, MacKerell AD Jr (2003) Consideration of molecular weight during compound selection in virtual target-based database screening. J Chem Inf Comput Sci 43(1):267–272. doi:10.1021/ci020055f

    Article  CAS  Google Scholar 

  50. Allen M, Reeves J, Mellor G (2000) High throughput fluorescence polarization: a homogeneous alternative to radioligand binding for cell surface receptors. J Biomol Screen 5(2):63–69. doi:10.1177/108705710000500202

    Article  CAS  Google Scholar 

  51. Jolley ME (1996) Fluorescence polarization assays for the detection of proteases and their inhibitors. J Biomol Screen 1(1):33–38

    Article  CAS  Google Scholar 

  52. Checovich WJ, Bolger RE, Burke T (1995) Fluorescence polarization—a new tool for cell and molecular biology. Nature 375(6528):254–256

    Article  CAS  Google Scholar 

  53. Warren GL, Andrews CW, Capelli A-M, Clarke B, LaLonde J, Lambert MH, Lindvall M, Nevins N, Semus SF, Senger S, Tedesco G, Wall ID, Woolven JM, Peishoff CE, Head MS (2005) A critical assessment of docking programs and scoring functions. J Med Chem 49(20):5912–5931. doi:10.1021/jm050362n

    Article  Google Scholar 

  54. Buschmann V, Weston KD, Sauer M (2003) Spectroscopic study and evaluation of red-absorbing fluorescent dyes. Bioconjug Chem 14:195–204. doi:10.1021/bc025600x

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported with funds from the Thunder Bay Regional Research Institute, the Natural Sciences and Engineering Research Council of Canada (NSERC), and the RBC Royal Bank’s Dr. Mark Poznansky Mentorship Development Award. High-throughput computational work in this project was made possible with resources provided through SHARCNET (www.sharcnet.ca) and Lakehead University’s High Performance Computing Centre (LUHPCC). The authors wish to acknowledge Darryl Willick for his help with data transfer and manipulation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wely B. Floriano.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (SVL 9 kb)

Supplementary material 2 (TXT 2,132 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamstra, R.L., Dadgar, S., Wigg, J. et al. Creating and virtually screening databases of fluorescently-labelled compounds for the discovery of target-specific molecular probes. J Comput Aided Mol Des 28, 1129–1142 (2014). https://doi.org/10.1007/s10822-014-9789-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-014-9789-0

Keywords