Skip to main content
Log in

Intermediate states in the binding process of folic acid to folate receptor α: insights by molecular dynamics and metadynamics

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Folate receptor α (FRα) is a cell surface, glycophosphatidylinositol-anchored protein which has focussed attention as a therapeutic target and as a marker for the diagnosis of cancer. It has a high affinity for the dietary supplemented folic acid (FOL), carrying out endocytic transport across the cell membrane and delivering the folate at the acidic pH of the endosome. Starting from the recently reported X-ray structure at pH 7, 100 ns classical molecular dynamics simulations have been carried out on the FRα-FOL complex; moreover, the ligand dissociation process has been studied by metadynamics, a recently reported method for the analysis of free-energy surfaces (FES), providing clues on the intermediate states and their energy terms. Multiple dissociation runs were considered to enhance the configurational sampling; a final clustering of conformations within the averaged FES provides the representative structures of several intermediate states, within an overall barrier for ligand escape of about 75 kJ/mol. Escaping of FOL to solvent occurs while only minor changes affect the FRα conformation of the binding pocket. During dissociation, the FOL molecule translates and rotates around a turning point located in proximity of the receptor surface. FOL at this transition state assumes an “L” shaped conformation, with the pteridin ring oriented to optimize stacking within W102 and W140 residues, and the negatively charged glutamate tail, outside the receptor, interacting with the positively charged R103 and R106 residues, that contrary to the bound state, are solvent exposed. We show that metadynamics method can provide useful insights at the atomistic level on the effects of point-mutations affecting functionality, thus being a very promising tool for any study related to folate-targeted drug delivery or cancer therapies involving folate uptake.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Antony AC (1992) Blood 79:2807–2820

    CAS  Google Scholar 

  2. Chancy CD, Kekuda R, Huang W, Prasad PD, Kuhnel JM, Sirotnak FM, Roon P, Ganapathy V, Smith SB (2000) J Biol Chem 275:20676–20684

    Article  CAS  Google Scholar 

  3. Clifton GT, Sears AK, Clive KS, Holmes JP, Mittendorf EA, Ioannides CG, Ponniah S, Peoples GE (2011) Hum Vaccin 7:183–90

  4. Solanky N, Requena Jimenez A, D’Souza SW, Sibley CP, Glazier JD (2010) Placenta 31:134–43

  5. Weitman SD, Lark RH, Coney LR, Fort DW, Frasca V, Zurawski VR Jr, Kamen BA (1992) Cancer Res 52:3396–3401

    CAS  Google Scholar 

  6. Matherly LH, Goldman DI (2003) Vitam Horm 66:403–456

    Article  CAS  Google Scholar 

  7. Dosio F, Milla P, Cattel L (2010) Curr Opin Investig Drugs 11:1424–1433

    CAS  Google Scholar 

  8. Maeng JH, Lee DH, Jung KH, Bae YH, Park IS, Jeong S, Jeon YS, Shim CK, Kim W, Kim J, Lee J, Lee YM, Kim JH, Kim WH, Hong SS (2010) Biomaterials 31:4995–5006

    Article  CAS  Google Scholar 

  9. Monaco HL (1997) EMBO J 16:1475–1483

    Article  CAS  Google Scholar 

  10. Della-Longa S, Arcovito A (2013) J Mol Graph Model 44:197–207

    Article  CAS  Google Scholar 

  11. Chen C, Ke J, Zhou XE, Yi W, Brunzelle JS, Li J, Yong EL, Xu HE, Melcher K (2013) Nature 500:486–489

    Article  CAS  Google Scholar 

  12. Berendsen HJC, van der Spoel D, van Drunen R (1995) Comput Phys Commun 91:43–56

    Article  CAS  Google Scholar 

  13. Hess B, Kutzner C, Lindhal E (2008) J Chem Theory Comput 4:435–447

    Article  CAS  Google Scholar 

  14. Hornak V, Abel R, Okur A, Strockbine B, Roitberg A, Simmerling C (2006) Proteins 65:712–725

    Article  CAS  Google Scholar 

  15. Klamt A, Schuurmann G (1993) J Chem Soc Perkin Trans 2:799–805

    Article  Google Scholar 

  16. Breneman CM, Wiberg KB (1990) J Comput Chem 11:361–373

    Article  CAS  Google Scholar 

  17. Neese F University of Bonn, Germany

  18. Bussi G, Donadio D, Parrinello M (2007) J Chem Phys 126:014101

    Article  Google Scholar 

  19. Berendsen HJC, Postma JPM, van Gunsteren WF, Di Nola A, Haak JR (1984) J. Chem. Phys. 81:3684–3690

    Article  CAS  Google Scholar 

  20. Laio A, Parrinello M (2002) Proc Natl Acad Sci USA 99:12562–12566

    Article  CAS  Google Scholar 

  21. Tribello GA, Bonomi M, Branduardi D, Camilloni C, Bussi G (2014) Comput Phys Commun 185:604–613

    Article  CAS  Google Scholar 

  22. Laio A, Rodriguez-Fortea A, Gervasio FL, Ceccarelli M, Parrinello M (2005) J Phys Chem B 109:6714–6721

    Article  CAS  Google Scholar 

  23. Vargiu AV, Ruggerone P, Magistrato A, Carloni P (2008) Nucleic Acids Res 36:5910–5921

    Article  CAS  Google Scholar 

  24. Daura X, Gademann K, Jaun B, Seeback D, van Gusteren WF, Mark AE (1999) Angew Chem Int Ed 38:236–240

    Article  CAS  Google Scholar 

  25. Wibowo AS, Singh M, Reeder KM, Carter JJ, Kovach AR, Meng W, Ratnam M, Zhang F, Dann CE III (2013) Proc Natl Acad Sci USA 110:15180–15188

    Article  CAS  Google Scholar 

  26. Maziarz KM, Monaco HL, Shen F, Ratnam M (1999) J Biol Chem 274:11086–11091

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Thanks are due to Prof. P. D’ Angelo and Dr. V. Migliorati for stimulating discussions and their help in comparing results from different quantum chemistry methods used to build-up the FOL partial charges. Financial support by the Italian Ministry of University and Research [Linea D1 Università Cattolica Sacro Cuore] is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Della-Longa.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (MOV 14790 kb)

Supplementary material 2 (AVI 4840 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Della-Longa, S., Arcovito, A. Intermediate states in the binding process of folic acid to folate receptor α: insights by molecular dynamics and metadynamics. J Comput Aided Mol Des 29, 23–35 (2015). https://doi.org/10.1007/s10822-014-9801-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-014-9801-8

Keywords

Navigation