Skip to main content

Advertisement

Log in

Proteochemometric model for predicting the inhibition of penicillin-binding proteins

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Neisseria gonorrhoeae infection threatens to become an untreatable sexually transmitted disease in the near future owing to the increasing emergence of N. gonorrhoeae strains with reduced susceptibility and resistance to the extended-spectrum cephalosporins (ESCs), i.e. ceftriaxone and cefixime, which are the last remaining option for first-line treatment of gonorrhea. Alteration of the penA gene, encoding penicillin-binding protein 2 (PBP2), is the main mechanism conferring penicillin resistance including reduced susceptibility and resistance to ESCs. To predict and investigate putative amino acid mutations causing β-lactam resistance particularly for ESCs, we applied proteochemometric modeling to generalize N. gonorrhoeae susceptibility data for predicting the interaction of PBP2 with therapeutic β-lactam antibiotics. This was afforded by correlating publicly available data on antimicrobial susceptibility of wild-type and mutant N. gonorrhoeae strains for penicillin-G, cefixime and ceftriaxone with 50 PBP2 protein sequence data using partial least-squares projections to latent structures. The generated model revealed excellent predictability (R 2 = 0.91, Q 2 = 0.77, Q 2Ext  = 0.78). Moreover, our model identified amino acid mutations in PBP2 with the highest impact on antimicrobial susceptibility and provided information on physicochemical properties of amino acid mutations affecting antimicrobial susceptibility. Our model thus provided insight into the physicochemical basis for resistance development in PBP2 suggesting its use for predicting and monitoring novel PBP2 mutations that may emerge in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. World Health Organization (2008) Global incidence and prevalence of selected curable sexually transmitted infections. World Health Organization, Geneva

    Google Scholar 

  2. Tapsall JW (2009) Neisseria gonorrhoeae and emerging resistance to extended spectrum cephalosporins. Curr Opin Infect Dis 22(1):87–91

    Article  Google Scholar 

  3. Georgopapadakou NH (1993) Penicillin-binding proteins and bacterial resistance to beta-lactams. Antimicrob Agents Chemother 37(10):2045–2053

    Article  CAS  Google Scholar 

  4. Zapun A, Contreras-Martel C, Vernet T (2008) Penicillin-binding proteins and beta-lactam resistance. FEMS Microbiol Rev 32(2):361–385

    Article  CAS  Google Scholar 

  5. Powell AJ, Tomberg J, Deacon AM, Nicholas RA, Davies C (2009) Crystal structures of penicillin-binding protein 2 from penicillin-susceptible and -resistant strains of Neisseria gonorrhoeae reveal an unexpectedly subtle mechanism for antibiotic resistance. J Biol Chem 284(2):1202–1212

    Article  CAS  Google Scholar 

  6. Barbour AG (1981) Properties of penicillin-binding proteins in Neisseria gonorrhoeae. Antimicrob Agents Chemother 19(2):316–322

    Article  CAS  Google Scholar 

  7. Ameyama S, Onodera S, Takahata M, Minami S, Maki N, Endo K, Goto H, Suzuki H, Oishi Y (2002) Mosaic-like structure of penicillin-binding protein 2 Gene (penA) in clinical isolates of Neisseria gonorrhoeae with reduced susceptibility to cefixime. Antimicrob Agents Chemother 46(12):3744–3749

    Article  CAS  Google Scholar 

  8. Ochiai S, Sekiguchi S, Hayashi A, Shimadzu M, Ishiko H, Matsushima-Nishiwaki R, Kozawa O, Yasuda M, Deguchi T (2007) Decreased affinity of mosaic-structure recombinant penicillin-binding protein 2 for oral cephalosporins in Neisseria gonorrhoeae. J Antimicrob Chemother 60(1):54–60

    Article  CAS  Google Scholar 

  9. Takahata S, Senju N, Osaki Y, Yoshida T, Ida T (2006) Amino acid substitutions in mosaic penicillin-binding protein 2 associated with reduced susceptibility to cefixime in clinical isolates of Neisseria gonorrhoeae. Antimicrob Agents Chemother 50(11):3638–3645

    Article  CAS  Google Scholar 

  10. Tomberg J, Unemo M, Davies C, Nicholas RA (2010) Molecular and structural analysis of mosaic variants of penicillin-binding protein 2 conferring decreased susceptibility to expanded-spectrum cephalosporins in Neisseria gonorrhoeae: role of epistatic mutations. Biochemistry 49(37):8062–8070

    Article  CAS  Google Scholar 

  11. Whiley DM, Limnios EA, Ray S, Sloots TP, Tapsall JW (2007) Diversity of penA alterations and subtypes in Neisseria gonorrhoeae strains from Sydney, Australia, that are less susceptible to ceftriaxone. Antimicrob Agents Chemother 51(9):3111–3116

    Article  CAS  Google Scholar 

  12. Osaka K, Takakura T, Narukawa K, Takahata M, Endo K, Kiyota H, Onodera S (2008) Analysis of amino acid sequences of penicillin-binding protein 2 in clinical isolates of Neisseria gonorrhoeae with reduced susceptibility to cefixime and ceftriaxone. J Infect Chemother 14(3):195–203

    Article  CAS  Google Scholar 

  13. Lee SG, Lee H, Jeong SH, Yong D, Chung GT, Lee YS, Chong Y, Lee K (2010) Various penA mutations together with mtrR, porB and ponA mutations in Neisseria gonorrhoeae isolates with reduced susceptibility to cefixime or ceftriaxone. J Antimicrob Chemother 65(4):669–675

    Article  CAS  Google Scholar 

  14. Liao M, Gu WM, Yang Y, Dillon JA (2011) Analysis of mutations in multiple loci of Neisseria gonorrhoeae isolates reveals effects of PIB, PBP2 and MtrR on reduced susceptibility to ceftriaxone. J Antimicrob Chemother 66(5):1016–1023

    Article  CAS  Google Scholar 

  15. Whiley DM, Goire N, Lambert SB, Ray S, Limnios EA, Nissen MD, Sloots TP, Tapsall JW (2010) Reduced susceptibility to ceftriaxone in Neisseria gonorrhoeae is associated with mutations G542S, P551S and P551L in the gonococcal penicillin-binding protein 2. J Antimicrob Chemother 65(8):1615–1618

    Article  CAS  Google Scholar 

  16. Nantasenamat C, Isarankura-Na-Ayudhya C, Naenna T, Prachayasittikul V (2009) A practical overview of quantitative structure-activity relationship. Excli J 8:74–88

    Google Scholar 

  17. Nantasenamat C, Isarankura-Na-Ayudhya C, Prachayasittikul V (2010) Advances in computational methods to predict the biological activity of compounds. Expert Opin Drug Discov 5(7):633–654

    Article  CAS  Google Scholar 

  18. Metz JT, Hajduk PJ (2010) Rational approaches to targeted polypharmacology: creating and navigating protein–ligand interaction networks. Curr Opin Chem Biol 14(4):498–504

    Article  CAS  Google Scholar 

  19. Bender A, Scheiber J, Glick M, Davies JW, Azzaoui K, Hamon J, Urban L, Whitebread S, Jenkins JL (2007) Analysis of pharmacology data and the prediction of adverse drug reactions and off-target effects from chemical structure. Chem Med Chem 2(6):861–873

    Article  CAS  Google Scholar 

  20. Prusis P, Muceniece R, Andersson P, Post C, Lundstedt T, Wikberg JE (2001) PLS modeling of chimeric MS04/MSH-peptide and MC1/MC3-receptor interactions reveals a novel method for the analysis of ligand–receptor interactions. Biochim Biophys Acta 1544(1–2):350–357

    Article  CAS  Google Scholar 

  21. Lapinsh M, Prusis P, Gutcaits A, Lundstedt T, Wikberg JE (2001) Development of proteo-chemometrics: a novel technology for the analysis of drug–receptor interactions. Biochim Biophys Acta 1525(1–2):180–190

    Article  CAS  Google Scholar 

  22. Wikberg JE, Lapins M, Prusis P (2004) Proteochemometrics: a tool for modeling the molecular interaction space. In: Kubinyi H, Müller G (eds) Chemogenomics in drug discovery—a medicinal chemistry perspective. Wiley-VCH, Weinheim

    Google Scholar 

  23. van Westen GJP, Wegner JK, Ijzerman AP, van Vlijmen HWT, Bender A (2011) Proteochemometric modeling as a tool to design selective compounds and for extrapolating to novel targets. Med Chem Commun 2(1):16–30

    Article  Google Scholar 

  24. Wikberg JE, Spjuth O, Eklund M, Lapins M (2012) Chemoinformatics taking biology into account: proteochemometrics. In: Guha R, Bender A (eds) Computational approaches in cheminformatics and bioinformatics. Wiley, Hoboken

    Google Scholar 

  25. Prusis P, Uhlen S, Petrovska R, Lapinsh M, Wikberg JE (2006) Prediction of indirect interactions in proteins. BMC Bioinform 7:167

    Article  Google Scholar 

  26. Kontijevskis A, Petrovska R, Mutule I, Uhlen S, Komorowski J, Prusis P, Wikberg JE (2007) Proteochemometric analysis of small cyclic peptides’ interaction with wild-type and chimeric melanocortin receptors. Proteins 69(1):83–96

    Article  CAS  Google Scholar 

  27. Lapinsh M, Veiksina S, Uhlen S, Petrovska R, Mutule I, Mutulis F, Yahorava S, Prusis P, Wikberg JE (2005) Proteochemometric mapping of the interaction of organic compounds with melanocortin receptor subtypes. Mol Pharmacol 67(1):50–59

    Article  CAS  Google Scholar 

  28. Lapinsh M, Prusis P, Petrovska R, Uhlen S, Mutule I, Veiksina S, Wikberg JE (2007) Proteochemometric modeling reveals the interaction site for Trp9 modified alpha-MSH peptides in melanocortin receptors. Proteins 67(3):653–660

    Article  CAS  Google Scholar 

  29. Lapinsh M, Prusis P, Lundstedt T, Wikberg JE (2002) Proteochemometrics modeling of the interaction of amine G-protein coupled receptors with a diverse set of ligands. Mol Pharmacol 61(6):1465–1475

    Article  CAS  Google Scholar 

  30. Lapinsh M, Prusis P, Uhlen S, Wikberg JE (2005) Improved approach for proteochemometrics modeling: application to organic compound–amine G protein-coupled receptor interactions. Bioinformatics 21(23):4289–4296

    Article  CAS  Google Scholar 

  31. Lapins M, Worachartcheewan A, Spjuth O, Georgiev V, Prachayasittikul V, Nantasenamat C, Wikberg JES (2013) A unified proteochemometric model for prediction of inhibition of cytochrome P450 isoforms. PLoS One 8(6):e66566

  32. Kontijevskis A, Komorowski J, Wikberg JE (2008) Generalized proteochemometric model of multiple cytochrome p450 enzymes and their inhibitors. J Chem Inf Model 48(9):1840–1850

    Article  CAS  Google Scholar 

  33. Lapins M, Wikberg JE (2010) Kinome-wide interaction modelling using alignment-based and alignment-independent approaches for kinase description and linear and non-linear data analysis techniques. BMC Bioinform 11:339

    Article  Google Scholar 

  34. Prusis P, Lapins M, Yahorava S, Petrovska R, Niyomrattanakit P, Katzenmeier G, Wikberg JE (2008) Proteochemometrics analysis of substrate interactions with dengue virus NS3 proteases. Bioorg Med Chem 16(20):9369–9377

    Article  CAS  Google Scholar 

  35. Wu D, Huang Q, Zhang Y, Zhang Q, Liu Q, Gao J, Cao Z, Zhu R (2012) Screening of selective histone deacetylase inhibitors by proteochemometric modeling. BMC Bioinform 13:212

    Article  CAS  Google Scholar 

  36. Dimitrov I, Garnev P, Flower DR, Doytchinova I (2010) EpiTOP—a proteochemometric tool for MHC class II binding prediction. Bioinformatics 26(16):2066–2068

    Article  CAS  Google Scholar 

  37. Lapins M, Eklund M, Spjuth O, Prusis P, Wikberg JE (2008) Proteochemometric modeling of HIV protease susceptibility. BMC Bioinform 9:181

    Article  Google Scholar 

  38. Lapins M, Wikberg JE (2009) Proteochemometric modeling of drug resistance over the mutational space for multiple HIV protease variants and multiple protease inhibitors. J Chem Inf Model 49(5):1202–1210

    Article  CAS  Google Scholar 

  39. Huang Q, Jin H, Liu Q, Wu Q, Kang H, Cao Z, Zhu R (2012) Proteochemometric modeling of the bioactivity spectra of HIV-1 protease inhibitors by introducing protein–ligand interaction fingerprint. PLoS One 7(7):e41698

    Article  CAS  Google Scholar 

  40. Junaid M, Lapins M, Eklund M, Spjuth O, Wikberg JE (2010) Proteochemometric modeling of the susceptibility of mutated variants of the HIV-1 virus to reverse transcriptase inhibitors. PLoS One 5(12):e14353

    Article  CAS  Google Scholar 

  41. Ito M, Deguchi T, Mizutani KS, Yasuda M, Yokoi S, Ito S, Takahashi Y, Ishihara S, Kawamura Y, Ezaki T (2005) Emergence and spread of Neisseria gonorrhoeae clinical isolates harboring mosaic-like structure of penicillin-binding protein 2 in Central Japan. Antimicrob Agents Chemother 49(1):137–143

    Article  CAS  Google Scholar 

  42. Ohnishi M, Watanabe Y, Ono E, Takahashi C, Oya H, Kuroki T, Shimuta K, Okazaki N, Nakayama S, Watanabe H (2010) Spread of a chromosomal cefixime-resistant penA gene among different Neisseria gonorrhoeae lineages. Antimicrob Agents Chemother 54(3):1060–1067

    Article  CAS  Google Scholar 

  43. Ohnishi M, Golparian D, Shimuta K, Saika T, Hoshina S, Iwasaku K, Nakayama S, Kitawaki J, Unemo M (2011) Is Neisseria gonorrhoeae initiating a future era of untreatable gonorrhea? Detailed characterization of the first strain with high-level resistance to ceftriaxone. Antimicrob Agents Chemother 55(7):3538–3545

    Article  CAS  Google Scholar 

  44. Pandori M, Barry PM, Wu A, Ren A, Whittington WL, Liska S, Klausner JD (2009) Mosaic penicillin-binding protein 2 in Neisseria gonorrhoeae isolates collected in 2008 in San Francisco, California. Antimicrob Agents Chemother 53(9):4032–4034

    Article  CAS  Google Scholar 

  45. Allen VG, Farrell DJ, Rebbapragada A, Tan J, Tijet N, Perusini SJ, Towns L, Lo S, Low DE, Melano RG (2011) Molecular analysis of antimicrobial resistance mechanisms in Neisseria gonorrhoeae isolates from Ontario, Canada. Antimicrob Agents Chemother 55(2):703–712

    Article  CAS  Google Scholar 

  46. Takahashi S, Kurimura Y, Hashimoto J, Uehara T, Hiyama Y, Iwasawa A, Nishimura M, Sunaoshi K, Takeda K, Suzuki N, Tsukamoto T (2012) Antimicrobial susceptibility and penicillin-binding protein 1 and 2 mutations in Neisseria gonorrhoeae isolated from male urethritis in Sapporo, Japan. J Infect Chemother 19(1):50–56

    Article  Google Scholar 

  47. Unemo M, Golparian D, Nicholas R, Ohnishi M, Gallay A, Sednaoui P (2012) High-level cefixime- and ceftriaxone-resistant Neisseria gonorrhoeae in France: novel penA mosaic allele in a successful international clone causes treatment failure. Antimicrob Agents Chemother 56(3):1273–1280

    Article  CAS  Google Scholar 

  48. Unemo M, Golparian D, Stary A, Eigentler A (2011) First Neisseria gonorrhoeae strain with resistance to cefixime causing gonorrhoea treatment failure in Austria, 2011. Euro Surveill 16(43):19998

  49. Lindberg R, Fredlund H, Nicholas R, Unemo M (2007) Neisseria gonorrhoeae isolates with reduced susceptibility to cefixime and ceftriaxone: association with genetic polymorphisms in penA, mtrR, porB1b, and ponA. Antimicrob Agents Chemother 51(6):2117–2122

    Article  CAS  Google Scholar 

  50. Sandberg M, Eriksson L, Jonsson J, Sjostrom M, Wold S (1998) New chemical descriptors relevant for the design of biologically active peptides. A multivariate characterization of 87 amino acids. J Med Chem 41(14):2481–2491

    Article  CAS  Google Scholar 

  51. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Jr., Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009). Gaussian 09, Revision A1, Connecticut, Wallingford

  52. Karelson M, Lobanov VS, Katritzky AR (1996) Quantum-chemical descriptors in QSAR/QSPR studies. Chem Rev 96(3):1027–1044

    Article  CAS  Google Scholar 

  53. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (2001) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 46(1–3):3–26

    Article  CAS  Google Scholar 

  54. Kelder J, Grootenhuis PD, Bayada DM, Delbressine LP, Ploemen JP (1999) Polar molecular surface as a dominating determinant for oral absorption and brain penetration of drugs. Pharm Res 16(10):1514–1519

    Article  CAS  Google Scholar 

  55. Oprea TI (2000) Property distribution of drug-related chemical databases. J Comput Aided Mol Des 14(3):251–264

    Article  CAS  Google Scholar 

  56. Hopkins AL, Keseru GM, Leeson PD, Rees DC, Reynolds CH (2014) The role of ligand efficiency metrics in drug discovery. Nat Rev Drug Discov 13(2):105–121

    Article  CAS  Google Scholar 

  57. Zhao S, Duncan M, Tomberg J, Davies C, Unemo M, Nicholas RA (2009) Genetics of chromosomally mediated intermediate resistance to ceftriaxone and cefixime in Neisseria gonorrhoeae. Antimicrob Agents Chemother 53(9):3744–3751

    Article  CAS  Google Scholar 

  58. Eriksson L, Byrne T, Johansson E, Trygg J, Vikström C (2013) Multi- and megavariate data analysis: basic principles and applications, 3rd edn. Umetrics Academy, Malmö

  59. Umetrics AB (2005) User’s guide to SIMCA-P, SIMCA-P+. Umetrics AB, Umeå

  60. Freyhult E, Prusis P, Lapinsh M, Wikberg JE, Moulton V, Gustafsson MG (2005) Unbiased descriptor and parameter selection confirms the potential of proteochemometric modelling. BMC Bioinform 6:50

    Article  Google Scholar 

  61. Höskuldsson A (2001) Variable and subset selection in PLS regression. Chemom Intell Lab Syst 55(1–2):23–38

    Article  Google Scholar 

  62. Tropsha A, Gramatica P, Gombar VK (2003) The importance of being earnest: validation is the absolute essential for successful application and interpretation of QSPR models. QSAR Comb Sci 22(1):69–77

    Article  CAS  Google Scholar 

  63. Eriksson L, Jaworska J, Worth AP, Cronin MT, McDowell RM, Gramatica P (2003) Methods for reliability and uncertainty assessment and for applicability evaluations of classification- and regression-based QSARs. Environ Health Perspect 111(10):1361–1375

    Article  CAS  Google Scholar 

  64. Consonni V, Ballabio D, Todeschini R (2009) Comments on the definition of the Q2 parameter for QSAR validation. J Chem Inf Model 49(7):1669–1678

    Article  CAS  Google Scholar 

  65. Roy K (2007) On some aspects of validation of predictive quantitative structure-activity relationship models. Expert Opin Drug Discov 2(12):1567–1577

    Article  CAS  Google Scholar 

  66. Tomberg J, Unemo M, Ohnishi M, Davies C, Nicholas RA (2013) Identification of amino acids conferring high-level resistance to expanded-spectrum cephalosporins in the penA gene from Neisseria gonorrhoeae strain H041. Antimicrob Agents Chemother 57(7):3029–3036

    Article  CAS  Google Scholar 

  67. Yamada M, Watanabe T, Miyara T, Baba N, Saito J, Takeuchi Y, Ohsawa F (2007) Crystal structure of cefditoren complexed with Streptococcus pneumoniae penicillin-binding protein 2X: structural basis for its high antimicrobial activity. Antimicrob Agents Chemother 51(11):3902–3907

    Article  CAS  Google Scholar 

  68. Gordon E, Mouz N, Duee E, Dideberg O (2000) The crystal structure of the penicillin-binding protein 2x from Streptococcus pneumoniae and its acyl-enzyme form: implication in drug resistance. J Mol Biol 299(2):477–485

    Article  CAS  Google Scholar 

  69. Muzammil S, Ross P, Freire E (2003) A major role for a set of non-active site mutations in the development of HIV-1 protease drug resistance. Biochemistry 42(3):631–638

    Article  CAS  Google Scholar 

Download references

Acknowledgments

S.N., under the supervision of V.P., was supported by the Royal Golden Jubilee Ph.D. scholarship (No. PHD/0195/2550) jointly funded by Mahidol University and the Thailand Research Fund. CN and JESW were supported by a joint grant from the Swedish Research Links program (No. C0610701) funded by the Swedish Research Council. The research was also supported in part by the Office of the Higher Education Commission and Mahidol University under the National Research Universities Initiative. Partial support from the annual budget grant of Mahidol University is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chanin Nantasenamat or Virapong Prachayasittikul.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1407 kb)

Supplementary material 2 (ALN 34 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nabu, S., Nantasenamat, C., Owasirikul, W. et al. Proteochemometric model for predicting the inhibition of penicillin-binding proteins. J Comput Aided Mol Des 29, 127–141 (2015). https://doi.org/10.1007/s10822-014-9809-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-014-9809-0

Keywords

Navigation