Skip to main content
Log in

Computational docking simulations of a DNA-aptamer for argininamide and related ligands

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

The binding properties of sequence-specific nucleic acids (aptamers) to low-molecular-weight ligands, macromolecules and even cells attract substantial scientific interest. These ligand-DNA complexes found different applications for sensing, nanomedicine, and DNA nanotechnology. Structural information on the aptamer-ligand complexes is, however, scarce, even though it would open-up the possibilities to design novel features in the complexes. In the present study we apply molecular docking simulations to probe the features of an experimentally documented L-argininamide aptamer complex. The docking simulations were performed using AutoDock 4.0 and YASARA Structure software, a well-suited program for following intermolecular interactions and structures of biomolecules, including DNA. We explored the binding features of a DNA aptamer to L-argininamide and to a series of arginine derivatives or arginine-like ligands. We find that the best docking results are obtained after an energy-minimization of the parent ligand-aptamer complexes. The calculated binding energies of all mono-substituted guanidine-containing ligands show a good correlation with the experimentally determined binding constants. The results provide valuable guidelines for the application of docking simulations for the prediction of aptamer-ligand structures, and for the design of novel features of ligand-aptamer complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. It should be noted that upon retrieval of the structure, the C-terminal moiety of the LARM ligands was not the expected carboxamide, but an enol (i.e. Cα(OH)=CH2). This was first corrected into the carboxamide before the rest of the computations were performed.

References

  1. Mayer G (2009) Angew Chem Int Ed 48:2672–2689

    Article  CAS  Google Scholar 

  2. Patel DJ, Suri AK (2000) Rev Mol Biotechnol 74:39–60

    Article  CAS  Google Scholar 

  3. Campolongo MJ, Tan SJ, Xu JF, Luo D (2010) Adv Drug Deliv Rev 62:606–616

    Article  CAS  Google Scholar 

  4. Gallas A, Alexander C, Davies MC, Purib S, Allen S (2013) Chem Soc Rev 42:7983–7997

    Article  CAS  Google Scholar 

  5. Liu X, Xu Y, Yu T, Clifford C, Liu Y, Yan H, Chang Y (2012) Nano Lett 12:4254–4259

    Article  CAS  Google Scholar 

  6. Afonin KA, Grabow WW, Walker FM, Bindewald E, Dobrovolskaia MA, Shapiro BA, Jaeger L (2011) Nat Protoc 6:2022–2034

    Article  CAS  Google Scholar 

  7. Willner I, Zayats M (2007) Angew Chem Int Ed 46:6408–6418

    Article  CAS  Google Scholar 

  8. Kolpashchikov DM (2010) Chem Rev 110:4709–4723

    Article  CAS  Google Scholar 

  9. Wang F, Lu CH, Willner I (2014) Chem Rev 114:2881–2941

    Article  CAS  Google Scholar 

  10. Famulok M, Mayer G (2011) Acc Chem Res 44:1349–1358

    Article  CAS  Google Scholar 

  11. Wilner OI, Willner I (2012) Chem Rev 112:2528–2556

    Article  CAS  Google Scholar 

  12. Liu D, Park SH, Reif JH, La Bean TH (2004) Proc Natl Acad Sci USA 101:717–722

    Article  CAS  Google Scholar 

  13. Krishnan Y, Simmel FC (2011) Angew Chem Int Ed 50:3124–3156

    Article  CAS  Google Scholar 

  14. Teller C, Willner I (2010) Curr Opin Biotechnol 21:376–391

    Article  CAS  Google Scholar 

  15. Yan H, Zhang X, Shen Z, Seeman NC (2002) Nature 415:62–65

    Article  CAS  Google Scholar 

  16. Bath J, Turberfield AJ (2007) Nat Nanotechnol 2:275–284

    Article  CAS  Google Scholar 

  17. Beissenhirtz MK, Willner I (2006) Org Biomol Chem 4:3392–3401

    Article  CAS  Google Scholar 

  18. Okamoto A, Tanaka K, Saito I (2004) J Am Chem Soc 126:9458–9463

    Article  CAS  Google Scholar 

  19. Stojanovic MN, Stefanovic D (2003) Nat Biotechnol 21:1069–1074

    Article  CAS  Google Scholar 

  20. Tuerk C, Gold L (1990) Science 249:505–510

    Article  CAS  Google Scholar 

  21. Ellington AD, Szostak JW (1990) Nature 346:818–822

    Article  CAS  Google Scholar 

  22. Sefah K, Shangguan D, Xiong X, O’Donoghue MB, Tan W (2010) Nat Protoc 5:1169–1185

    Article  CAS  Google Scholar 

  23. Feigon J, Dieckmann T, Smith FW (1996) Chem Biol 3:611–617

    Article  CAS  Google Scholar 

  24. Thomas JR, Hergenrother PJ (2008) Chem Rev 108:1171–1224

    Article  CAS  Google Scholar 

  25. Mannironi C, DiNardo A, Fruscoloni P, Tocchini-Valentini GP (1997) Biochemistry 36:9726–9734

    Article  CAS  Google Scholar 

  26. Padlan CS, Malashkevich VN, Almo SC, Levy M, Brenowitz M, Girvin ME (2014) RNA 20:447–461

    Article  CAS  Google Scholar 

  27. Krauss IR, Pica A, Merlino A, Mazzarella L, Sica F (2013) Acta Cryst D69:2403–2411

    Google Scholar 

  28. McKeague M, DeRosa MC (2012) J Nucl Acids Article ID 748913, 20 pages. See also: the Aptamer Base (http://aptamerbase.semanticscience.org/)

  29. Stelzer AC, Frank AT, Kratz JD, Swanson MD, Gonzalez-Hernandez MJ, Lee J, Andricioaei I, Markovitz DM, Al-Hashimi HM (2011) Nat Chem Biol 7:553–559

    Article  CAS  Google Scholar 

  30. Fulle S, Christ NA, Knestner E, Gohlke H (2010) J Chem Inf Model 50:1489–1501

    Article  CAS  Google Scholar 

  31. Haller A, Soulière MF, Micura R (2011) Acc Chem Res 44:1339–1348

    Article  CAS  Google Scholar 

  32. Fulle S, Gohlke H (2010) J Mol Recognit 23:220–231

    CAS  Google Scholar 

  33. Pfeffer P, Gohlke H (2007) J Chem Inf Model 47:1868–1876

  34. Fadrná E, Spackova N, Sarzynska J, Koca J, Orozco M, Cheatham TE III, Kulinski T, Sponer J (2009) J Chem Theory Comput 5:2514–2530

    Article  Google Scholar 

  35. Westhof E, Cruz JA (2009) Cell 136:604–609

    Article  Google Scholar 

  36. Phan AT, Kuryavyi V, Patel DJ (2006) Curr Opin Struct Biol 16:288–298

    Article  CAS  Google Scholar 

  37. Boehr DD, Nussinov R, Wright PE (2009) Nat Chem Biol 5:789–796

    Article  CAS  Google Scholar 

  38. Beckers MLM, Buydens LMC (1998) J Comput Chem 19:695–715

  39. Zhang Q, Sun X, Watt ED, Al-Hashimi HM (2006) Science 311:653–656

    Article  CAS  Google Scholar 

  40. Bosshard HR (2001) News Physiol Sci 16:171–173

    CAS  Google Scholar 

  41. Guilbert C, James TL (2008) J Chem Inf Model 48:1257–1268

    Article  CAS  Google Scholar 

  42. Krieger E, Darden T, Nabuurs S, Finkelstein A, Vriend G (2004) Proteins 57:678–683

    Article  CAS  Google Scholar 

  43. Caulfield T, Devkota B (2012) Proteins 80:2489–2500

    Article  CAS  Google Scholar 

  44. Harada K, Frankel AD (1995) EMBO J 14:5798–5811

  45. Lin PO, Tong SJ, Louis SR, Chang Y, Chen WY (2009) Phys Chem Chem Phys 11:9744–9750

    Article  CAS  Google Scholar 

  46. Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ (1998) J Comput Chem 19:1639–1662

    Article  CAS  Google Scholar 

  47. Peréz A, Marchán I, Svozil D, Sponer J, Cheatham TE III, Laughton CA, Orozco M (2007) Biophys J 92:3817–3829

    Article  Google Scholar 

  48. Holt PA, Chaires JB, Trent JO (2008) J Chem Inf Model 48:1602–1615

    Article  CAS  Google Scholar 

  49. Lin PO, Tsai C-W, Wu JW, Ruaan R-C, Chen W-Y (2012) Biotechnol J 7:1367–1375

    Article  CAS  Google Scholar 

  50. Bisignano P, Moran O (2010) Biochimie 92:51–57

    Article  CAS  Google Scholar 

  51. Krieger E, Dunbrack RL, Hooft RW, Krieger B (2012) Methods Mol Biol 819:405–421

    Article  CAS  Google Scholar 

  52. Albada HB, Rosati F, Coquière D, Roelfes G, Liskamp RMJ (2011) Eur J Org Chem 2011:1714–1720

    Article  Google Scholar 

  53. Snyder RD, Holt PA, Maguire JM, Trent JO (2013) Environ Mol Mutagen 54:668–681

    Article  CAS  Google Scholar 

  54. Ricci CG, Netz PA (2009) J Chem Inf Model 49:1925–1935

    Article  CAS  Google Scholar 

  55. Netz PA (2012) Int J Quant Chem 122:3296–3302

    Article  Google Scholar 

  56. Tooth YY, Lipkowitz KB, Long EC (2006) J Chem Theory Comput 2:1453–1463

    Article  Google Scholar 

  57. Rohs R, Bloch I, Sklenar H, Shakked Z (2005) Nucl Acids Res 33:7048–7057

    Article  CAS  Google Scholar 

  58. Gilad Y, Senderowitz H (2014) J Chem Inf Model 54:96–107

    Article  CAS  Google Scholar 

  59. Reshetnikov R, Golovin A, Spiridonova V, Kopylov A, Sponer J (2010) J Chem Theory Comput 6:3003–3014

  60. Lin CH, Patel DJ (1996) Nat Struct Biol 3:1046–1050

  61. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) J Comput Chem 30:2785–2791

    Article  CAS  Google Scholar 

  62. Wang J, Cieplak P, Kollman PA (2000) J Comput Chem 21:1049–1074

    Article  CAS  Google Scholar 

  63. Jakalian A, Jack DB, Dayly CI (2002) J Comput Chem 23:1623–1641

    Article  CAS  Google Scholar 

  64. Duan Y, Wu C, Chowdhury S, Lee MC, Xiong G, Zhang W, Yang R, Cieplak P, Luo R, Lee T (2003) J Comput Chem 24:1999–2012

    Article  CAS  Google Scholar 

  65. Kawata M, Nagashima U (2001) Chem Phys Lett 340:165–172

    Article  CAS  Google Scholar 

  66. Krieger E, Nielsen JE, Spronk CA, Vriend G (2006) J Mol Graph Model 25:481–486

    Article  CAS  Google Scholar 

  67. Huey R, Morris GM, Olson AJ, Goodsell DS (2007) J Comput Chem 28:1145–1152

    Article  CAS  Google Scholar 

  68. Solis FJ, Wets RJB (1981) Math Oper Res 6:19–30

    Article  Google Scholar 

Download references

Acknowledgments

This research is supported by the Israel Science Foundation.

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Itamar Willner.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3084 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Albada, H.B., Golub, E. & Willner, I. Computational docking simulations of a DNA-aptamer for argininamide and related ligands. J Comput Aided Mol Des 29, 643–654 (2015). https://doi.org/10.1007/s10822-015-9844-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-015-9844-5

Keywords

Navigation