Skip to main content
Log in

Predicting DPP-IV inhibitors with machine learning approaches

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Dipeptidyl peptidase IV (DPP-IV) is a promising Type 2 diabetes mellitus (T2DM) drug target. DPP-IV inhibitors prolong the action of glucagon-like peptide-1 (GLP-1) and gastric inhibitory peptide (GIP), improve glucose homeostasis without weight gain, edema, and hypoglycemia. However, the marketed DPP-IV inhibitors have adverse effects such as nasopharyngitis, headache, nausea, hypersensitivity, skin reactions and pancreatitis. Therefore, it is still expected for novel DPP-IV inhibitors with minimal adverse effects. The scaffolds of existing DPP-IV inhibitors are structurally diversified. This makes it difficult to build virtual screening models based upon the known DPP-IV inhibitor libraries using conventional QSAR approaches. In this paper, we report a new strategy to predict DPP-IV inhibitors with machine learning approaches involving naïve Bayesian (NB) and recursive partitioning (RP) methods. We built 247 machine learning models based on 1307 known DPP-IV inhibitors with optimized molecular properties and topological fingerprints as descriptors. The overall predictive accuracies of the optimized models were greater than 80%. An external test set, composed of 65 recently reported compounds, was employed to validate the optimized models. The results demonstrated that both NB and RP models have a good predictive ability based on different combinations of descriptors. Twenty “good” and twenty “bad” structural fragments for DPP-IV inhibitors can also be derived from these models for inspiring the new DPP-IV inhibitor scaffold design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Mentzel S, Dijkman HB, Van Son JP, Koene RA, Assmann KJ (1996) Organ distribution of aminopeptidase A and dipeptidyl peptidase IV in normal mice. J Histochem Cytochem 44(5):445–461

    Article  CAS  Google Scholar 

  2. Drucker DJ, Nauck MA (2006) The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. The Lancet 368(9548):1696–1705. doi:10.1016/s0140-6736(06)69705-5

    Article  CAS  Google Scholar 

  3. Hopsu-Havu VK, Glenner GG (1966) A new dipeptide naphthylamidase hydrolyzing glycyl-prolyl-beta-naphthylamide. Histochemie 7(3):197–201

    Article  CAS  Google Scholar 

  4. Rasmussen HB, Branner S, Wiberg FC, Wagtmann N (2003) Crystal structure of human dipeptidyl peptidase IV/CD26 in complex with a substrate analog. Nat Struct Biol 10(1):19–25. doi:10.1038/nsb882

    Article  CAS  Google Scholar 

  5. Tanaka T, Camerini D, Seed B, Torimoto Y, Dang NH, Kameoka J, Dahlberg HN, Schlossman SF, Morimoto C (1992) Cloning and functional expression of the T cell activation antigen CD26. J Immunol 149(2):481–486

    CAS  Google Scholar 

  6. Yoshida T, Akahoshi F, Sakashita H, Sonda S, Takeuchi M, Tanaka Y, Nabeno M, Kishida H, Miyaguchi I, Hayashi Y (2012) Fused bicyclic heteroarylpiperazine- substituted L-prolylthiazolidines as highly potent DPP-4 inhibitors lacking the electrophilic nitrile group. Bioorg Med Chem 20(16):5033–5041. doi:10.1016/j.bmc.2012.06.033

    Article  CAS  Google Scholar 

  7. Watanabe YS, Yasuda Y, Kojima Y, Okada S, Motoyama T, Takahashi R, Oka M (2015) Anagliptin, a potent dipeptidyl peptidase IV inhibitor: its single-crystal structure and enzyme interactions. J Enzyme Inhib Med Chem 30(6):981–988. doi:10.3109/14756366.2014.1002402

    Article  CAS  Google Scholar 

  8. Nabeno M, Akahoshi F, Kishida H, Miyaguchi I, Tanaka Y, Ishii S, Kadowaki T (2013) A comparative study of the binding modes of recently launched dipeptidyl peptidase IV inhibitors in the active site. Biochem Biophys Res Commun 434(2):191–196. doi:10.1016/j.bbrc.2013.03.010

    Article  CAS  Google Scholar 

  9. Patel BD, Ghate MD (2014) Recent approaches to medicinal chemistry and therapeutic potential of dipeptidyl peptidase-4 (DPP-4) inhibitors. Eur J Med Chem 74:574–605. doi:10.1016/j.ejmech.2013.12.038

    Article  CAS  Google Scholar 

  10. Green BD, Flatt PR, Bailey CJ (2006) Dipeptidyl peptidase IV (DPP IV) inhibitors: A newly emerging drug class for the treatment of type 2 diabetes. Diab Vasc Dis Res 3(3):159–165. doi:10.3132/dvdr.2006.024

    Article  Google Scholar 

  11. Scheen AJ (2013) Cardiovascular effects of gliptins. Nat Rev Cardiol 10(2):73–84. doi:10.1038/nrcardio.2012.183

    Article  CAS  Google Scholar 

  12. Barreira da Silva R, Laird ME, Yatim N, Fiette L, Ingersoll MA, Albert ML (2015) Dipeptidylpeptidase 4 inhibition enhances lymphocyte trafficking, improving both naturally occurring tumor immunity and immunotherapy. Nat Immunol 16(8):850–858. doi:10.1038/ni.3201

    Article  CAS  Google Scholar 

  13. Zhong J, Rao X, Deiuliis J, Braunstein Z, Narula V, Hazey J, Mikami D, Needleman B, Satoskar AR, Rajagopalan S (2013) A potential role for dendritic cell/macrophage-expressing DPP4 in obesity-induced visceral inflammation. Diabetes 62(1):149–157. doi:10.2337/db12-0230

    Article  CAS  Google Scholar 

  14. Hiramatsu H, Kyono K, Higashiyama Y, Fukushima C, Shima H, Sugiyama S, Inaka K, Yamamoto A, Shimizu R (2003) The structure and function of human dipeptidyl peptidase IV, possessing a unique eight-bladed beta-propeller fold. Biochem Biophys Res Commun 302(4):849–854. doi:10.1016/S006-291X(03)00258-4

    Article  CAS  Google Scholar 

  15. Juillerat-Jeanneret L (2014) Dipeptidyl peptidase IV and its inhibitors: therapeutics for type 2 diabetes and what else?. J Med Chem 57(6):2197–2212. doi:10.1021/jm400658e

    Article  CAS  Google Scholar 

  16. Patel BD, Ghate MD (2014) 3D-QSAR studies of dipeptidyl peptidase-4 inhibitors using various alignment methods. Med Chem Res 24(3):1060–1069. doi:10.1007/s00044-014-1178-7

    Article  Google Scholar 

  17. Kang NS, Ahn JH, Kim SS, Chae CH, Yoo SE (2007) Docking-based 3D-QSAR study for selectivity of DPP4, DPP8, and DPP9 inhibitors. Bioorg Med Chem Lett 17(13):3716–3721. doi:10.1016/j.bmcl.2007.04.031

    Article  CAS  Google Scholar 

  18. Lavecchia A (2015) Machine-learning approaches in drug discovery: methods and applications. Drug Discov Today 20(3):318–331. doi:10.1016/j.drudis.2014.10.012

    Article  Google Scholar 

  19. Lima AN, Philot EA, Trossini GHG, Scott LPB, Maltarollo VG, Honorio KM (2016) Use of machine learning approaches for novel drug discovery. Expert Opin Drug Discov 11(3):225–239. doi:10.1517/17460441.2016.1146250

    Article  CAS  Google Scholar 

  20. Durrant JD, de Oliveira CA, McCammon JA (2011) POVME: an algorithm for measuring binding-pocket volumes. J Mol Graph Model 29(5):773–776. doi:10.1016/j.jmgm.2010.10.007

    Article  CAS  Google Scholar 

  21. Durrant JD, Votapka L, Sorensen J, Amaro RE (2014) POVME 2.0: an enhanced tool for determining pocket shape and volume characteristics. J Chem Theory Comput 10(11):5047–5056. doi:10.1021/ct500381c

    Article  CAS  Google Scholar 

  22. Chen L, Li Y, Zhao Q, Peng H, Hou T (2011) ADME evaluation in drug discovery. 10. Predictions of P-glycoprotein inhibitors using recursive partitioning and naive Bayesian classification techniques. Mol Pharm 8(3):889–900. doi:10.1021/mp100465q

    Article  CAS  Google Scholar 

  23. Fang JS, Yang RY, Gao L, Zhou D, Yang SQ, Liu AL, Du GH (2013) Predictions of BuChE inhibitors using support vector machine and naive Bayesian classification techniques in drug discovery. J Chem Inf Model 53(11):3009–3020. doi:10.1021/ci400331p

    Article  CAS  Google Scholar 

  24. Tian S, Li Y, Wang J, Zhang J, Hou T (2011) ADME evaluation in drug discovery. 9. Prediction of oral bioavailability in humans based on molecular properties and structural fingerprints. Mol Pharm 8(3):841–851. doi:10.1021/mp100444g

    Article  CAS  Google Scholar 

  25. McIntyre TA, Han C, Davis CB (2009) Prediction of animal clearance using naive Bayesian classification and extended connectivity fingerprints. Xenobiotica 39(7):487–494. doi:10.1080/00498250902926906

    Article  CAS  Google Scholar 

  26. Wang L, Chen L, Liu ZH, Zheng MH, Gu Q, Xu J (2014) Predicting mTOR inhibitors with a classifier using recursive partitioning and naive Bayesian approaches. Plos One 9(5). doi:10.1371/journal.pone.0095221

  27. Nigsch F, Bender A, Jenkins JL, Mitchell JBO (2008) Ligand-target prediction using Winnow and Naive Bayesian algorithms and the implications of overall performance Statistics. J Chem Inf Model 48(12):2313–2325. doi:10.1021/ci800079x

    Article  CAS  Google Scholar 

  28. Glick M, Jenkins JL, Nettles JH, Hitchings H, Davies JW (2006) Enrichment of high-throughput screening data with increasing levels of noise using support vector machines, recursive partitioning, and Laplacian-modified naive Bayesian classifiers. J Chem Inf Model 46(1):193–200. doi:10.1021/ci050374h

    Article  CAS  Google Scholar 

  29. Xia XY, Maliski EG, Gallant P, Rogers D (2004) Classification of kinase inhibitors using a Bayesian model. J Med Chem 47(18):4463–4470. doi:10.1021/jm0303195

    Article  CAS  Google Scholar 

  30. De’ath G, Fabricius KE (2000) Classification and regression trees: a powerful yet simple technique for ecological data analysis. Ecology 81(11):3178–3192. doi:10.1890/0012-9658(2000)081[3178:Cartap]2.0.Co;2

    Article  Google Scholar 

  31. Baldi P, Brunak S, Chauvin Y, Andersen CAF, Nielsen H (2000) Assessing the accuracy of prediction algorithms for classification: an overview. Bioinformatics 16(5):412–424

    Article  CAS  Google Scholar 

  32. Xu J (2002) A new approach to finding natural chemical structure classes. J Med Chem 45(24):5311–5320. doi:10.1021/jm010520k

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation of China (81473138, 81573310), Guangdong Province Science and Technology Planning Project (2016A020217002), Guangdong Province Frontier and Key Technology Innovation Program (2015B010109004), Guangdong National Science Foundation (2016A030310228) and Guangdong NSF (2016A030310228). We also thank Professor Johann Gasteiger for his advice and proof-reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, J., Li, C., Liu, Z. et al. Predicting DPP-IV inhibitors with machine learning approaches. J Comput Aided Mol Des 31, 393–402 (2017). https://doi.org/10.1007/s10822-017-0009-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-017-0009-6

Keywords

Navigation