Skip to main content
Log in

Antagonist-perturbation mechanism for activation function-2 fixed motifs: active conformation and docking mode of retinoid X receptor antagonists

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

HX531, which contains a dibenzodiazepine skeleton, is one of the first retinoid X receptor (RXR) antagonists. Functioning via RXR-PPARγ heterodimer, this compound is receiving a lot of attention as a therapeutic drug candidate for diabetic disease controlling differentiation of adipose tissue. However, the active conformation of HX531 for RXRs is not well established. In the present study, quantum mechanics calculations and molecular mechanical docking simulations were carried out to precisely study the docking mode of HX531 with the human RXRα ligand-binding domain, as well as to provide a new approach to drug design using a structure-based perspective. It was suggested that HX531, which has the R configuration for the bent dibenzodiazepine plane together with the equatorial configuration for the N-methyl group attached to the nitrogen atom in the seven-membered diazepine ring, is a typical activation function-2 (AF-2) fixed motif perturbation type antagonist, which destabilizes the formation of AF-2 fixed motifs. On the other hand, the docking simulations supported the experimental result that LG100754 is an RXR homodimer antagonist and an RXR heterodimer agonist.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Tsuji M (2014) Local motifs involved in the canonical structure of the ligand-binding domain in the nuclear receptor superfamily. J Struct Biol 185:355–365

    Article  CAS  Google Scholar 

  2. Tsuji M, Shudo K, Kagechika H (2017) Identifying the receptor subtype selectivity of retinoid X and retinoic acid receptors via quantum mechanics. FEBS Open Bio 7:391–396

    Article  CAS  Google Scholar 

  3. Umemiya H, Fukasawa H, Ebisawa M, Eyrolles L, Kawachi E, Eisenmann G, Gronemeyer H, Hashimoto Y, Shudo K, Kagechika H (1997) Regulation of retinoidal actions by diazepinylbenzoic acids. Retinoid synergists which activate the RXR-RAR heterodimers. J Med Chem 40:4222–4234

    Article  CAS  Google Scholar 

  4. Ebisawa M, Umemiya H, Ohta K, Fukasawa H, Kawachi E, Christoffel G, Gronemeyer H, Tsuji M, Hashimoto Y, Shudo K, Kagechika H (1999) Retinoid X receptor-antagonistic diazepinylbenzoic acids. Chem Pharm Bull 47:1778–1786

    Article  CAS  Google Scholar 

  5. Koch SSC, Dardashti LJ, Hebert JJ, White SK, Croston GE, Flatten KS, Heyman EA, Nadzan AM (1996) Identification of the first retinoid X receptor homodimer antagonist. J Med Chem 39:3229–3234

    Article  CAS  Google Scholar 

  6. Yamauchi T, Waki H, Kamon J, Murakami K, Motojima K, Komeda K, Miki H, Kubota N, Terauchi Y, Tsuchida A, Tsuboyama-Kasaoka N, Yamauchi N, Ide T, Hori W, Kato S, Fukayama M, Akanuma Y, Ezaki O, Itai A, Nagai R, Kimura S, Tobe K, Kagechika H, Shudo K, Kadowaki T (2001) Inhibition of RXR and PPARγ ameliorates diet-induced obesity and type 2 diabetes. J Clin Invest 108:1001–1013

    Article  CAS  Google Scholar 

  7. Egea PF, Mitschler A, Rochel N, Ruff M, Chambon P, Moras D (2000) Crystal structure of the human RXRα ligand-binding domain bound to its natural ligand: 9-cis retinoic acid. EMBO J 19:2592–2601

    Article  CAS  Google Scholar 

  8. Cesario RM, Klausing K, Razzaghi H, Crombie D, Rungta D, Heyman RA, Lala DS (2001) The rexinoid LG100754 is a nobel RXR:PPARγ agonist and decreases glucose levels in vivo. Mol Endocrinol 15:1360–1369

    CAS  Google Scholar 

  9. Tsuji M (2015) A ligand-entry surface of the nuclear receptor superfamily consists of the helix H3 of the ligand-binding domain. J Mol Graph Model 62:262–275

    Article  CAS  Google Scholar 

  10. Sato Y, Ramalanjaona N, Huet T, Osz J, Antony P, Peluso-lltis C, Poussin-Courrmontagne P, Ennifar E, Mély Y, Dejaegere A, Moras D, Rochel N (2010) The “Phantom Effect” of the rexinoid LG100754: structural and functional insights. PLoS ONE 5:e15119

    Article  CAS  Google Scholar 

  11. HyperChem Professional, version 8.0.10 Hypercube, Inc., Gainesville

  12. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2013) Gaussian 09, revision E.01, Gaussian, Inc., Wallingford

    Google Scholar 

  13. Tsuji M, Shudo K, Kagechika H (2015) Docking simulations suggest that all-trans retinoic acid could bind to retinoid X receptors. J Comput Aided Mol Des 29:975–988

    Article  CAS  Google Scholar 

  14. Tsuji M (2007) Development of the structure-based drug design systems, HMHC and DSHC. Mol Sci 1:NP004

    Google Scholar 

  15. Tsuji M (2016) Homology Modeling Professional for HyperChem, revision G1. Institute of Molecular Function, Saitama

    Google Scholar 

  16. Gampe RT Jr, Montana VG, Lambert HM, Miller AB, Bledsoe RK, Milburm MV, Kiewer SA, Willson TM, Xu HE (2000) Asymmetry in the PPARγ/RXRα crystal structure reveals the molecular basis of heterodimerization among nuclear receptors. Mol Cell 5:545–555

    Article  CAS  Google Scholar 

  17. Tsuji M (2016) Docking Study with Hyperchem, revision G1. Institute of Molecular Function, Saitama

    Google Scholar 

  18. Zhang H, Zhou R, Li L, Chen J, Li C, Ding H, Yu L, Hu L, Jiang H, Shen X (2011) Danthron functions as a retinoic X receptor antagonist by stabilizing tetramers of the receptor. J Biol Chem 286:1868–1875

    Article  CAS  Google Scholar 

  19. Zhang H, Chen L, Chen J, Jiang H, Shen X (2011) Structural basis for retinoic X receptor repression on the tetramer. J Biol Chem 286:24593–24598

    Article  CAS  Google Scholar 

  20. Bourguet W, Vivat V, Wurtz JM, Chambon P, Gronemeyer H, Moras D (2000) Crystal structure of a heterodimeric complex of RAR and RXR ligand-binding domains. Mol Cell 5:289–298

    Article  CAS  Google Scholar 

  21. Vivat V, Zechel C, Wurtz JM, Bourguet W, Kagechika H, Umemiya H, Shudo K, Moras D, Gronemeyer H, Chambon P (1997) A mutation mimicking ligand-induced conformational change yields a constitutive RXR that senses allosteric effects in heterodimers. EMBO J 16:5697–5709

    Article  CAS  Google Scholar 

  22. Tsuji M (2006) Seitaikoubunnsi niokeru sougosayoubui no yosokuhouhou. Patent 2007–299125

  23. Lala DS, Mukherjee R, Schulman IG, Koch SSC, Dardashti LJ, Nadzan AM, Croston GE, Evans RM, Heyman RA (1996) Activation of specific RXR heterodimers by an antagonist of RXR homodimers. Nature 383:450–453

    Article  CAS  Google Scholar 

  24. Schulman IG, Li C, Schwabe JWR, Evans RM (1997) The phantom ligand effect: allosteric control of transcription by the retinoid X receptor. Genes Dev 11:299–308

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Motonori Tsuji.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 503 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsuji, M. Antagonist-perturbation mechanism for activation function-2 fixed motifs: active conformation and docking mode of retinoid X receptor antagonists. J Comput Aided Mol Des 31, 577–585 (2017). https://doi.org/10.1007/s10822-017-0025-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-017-0025-6

Keywords

Navigation