Skip to main content
Log in

Computational design of bio-inspired carnosine-based HOBr antioxidants

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

During a respiratory burst the enzyme myeloperoxidase generates significant amounts of hypohalous acids (HOX, X = Cl and Br) in order to inflict oxidative damage upon invading pathogens. However, excessive production of these potent oxidants is associated with numerous inflammatory diseases. It has been suggested that the endogenous antioxidant carnosine is an effective HOCl scavenger. Recent computational and experimental studies suggested that an intramolecular Cl+ transfer from the imidazole ring to the terminal amine might play an important role in the antioxidant activity of carnosine. Based on high-level ab initio calculations, we propose a similar reaction mechanism for the intramolecular Br+ transfer in carnosine. These results suggest that carnosine may be an effective HOBr scavenger. On the basis of the proposed reaction mechanism, we proceed to design systems that share similar structural features to carnosine but with enhanced HOX scavenging capabilities for X = Cl and Br. We find that (i) elongating the β-alanyl-glycyl side chain by one carbon reduces the reaction barriers by up to 44%, and (ii) substituting the imidazole ring with strong electron-donating groups reduces the reaction barriers by similar amounts. We also show that the above structural and electronic effects are largely additive. In an antioxidant candidate that involves both of these effects the reaction barriers are reduced by 71%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. van Dalen C, Whitehouse M, Winterbourn C, Kettle A (1997) Biochem J 327:487

    Article  Google Scholar 

  2. Slungaard A, Mahoney JR (1991) J Biol Chem 266:4903

    CAS  Google Scholar 

  3. Thomas EL, Fishman M (1986) J Biol Chem 261:9694

    CAS  Google Scholar 

  4. van der Veen BS, de Winther MP, Heeringa P (2009) Antioxid Redox Signal 11:2899

    Article  CAS  Google Scholar 

  5. Klebanoff SJ (2005) J Leukoc Biol 77:598

    Article  CAS  Google Scholar 

  6. Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J (2007) Int J Biochem Cell Biol 39:44

    Article  CAS  Google Scholar 

  7. Yap YW, Whiteman M, Cheung NS (2007) Cell Signal 19:219

    Article  CAS  Google Scholar 

  8. Malle E, Marsche G, Arnhold J, Davies MJ (2006) Biochim Biophys Acta 1761:392

    Article  CAS  Google Scholar 

  9. Balaban RS, Nemoto S, Finkel T (2005) Cell 120:483

    Article  CAS  Google Scholar 

  10. Stocker R, Keaney JF Jr (2004) Physiol Rev 84:1381

    Article  CAS  Google Scholar 

  11. Wu W, Samoszuk MK, Comhair SAA, Thomassen MJ, Farver CF, Dweik RA, Kavuru MS, Erzurum SC, Hazen SL (2000) J Clin Invest 105:1455

    Article  CAS  Google Scholar 

  12. Aldridge RE, Chan T, van Dalen CJ, Senthilmohan R, Winn M, Venge P, Town GI, Kettle AJ (2002) Free Rad Biol Med 33:847

    Article  CAS  Google Scholar 

  13. Spry CJF (1988) Eosinophils: a comprehensive review, and guide to the scientific and medical literature. Oxford University Press, Oxford

    Google Scholar 

  14. Kaliyeva L, Zhumagali S, Akhmetova N, Karton A, O’Reilly RJ (2017) Int J Quantum Chem 117:e25319

    Article  Google Scholar 

  15. O’Reilly RJ, Karton A (2016) Int J Quantum Chem 116:52

    Article  Google Scholar 

  16. O’Reilly RJ, Karton A, Radom. L (2013) J Phys Chem A 117:460

    Article  Google Scholar 

  17. O’Reilly RJ, Karton A, Radom L (2012) Int J Quantum Chem 112:1862

    Article  Google Scholar 

  18. O’Reilly RJ, Karton A, Radom L (2011) J Phys Chem A 115:5496

    Article  Google Scholar 

  19. Sivey JD, Howell SC, Bean DJ, McCurry DL, Mitch WA, Wilson CJ (2013) Biochemistry 52:1260

    Article  CAS  Google Scholar 

  20. Pattison DI, Hawkins CL, Davies MJ (2009) Chem Res Toxicol 22:807

    Article  CAS  Google Scholar 

  21. Hawkins CL (2009) Free Radic Res 43:1147

    Article  CAS  Google Scholar 

  22. Davies MJ, Hawkins CL, Pattison DI, Rees MD (2008) Antioxid Redox Signal 10:1199

    Article  CAS  Google Scholar 

  23. Pattison DI, Davies MJ (2006) Curr Med Chem 13:3271

    Article  CAS  Google Scholar 

  24. Pattison DI, Davies MJ (2005) Biochemistry 44:7378

    Article  CAS  Google Scholar 

  25. Hawkins CL, Pattison DI, Davies MJ (2003) Amino Acids 25:259

    Article  CAS  Google Scholar 

  26. Pattison DI, Davies MJ (2004) Biochemistry 43:4799

    Article  CAS  Google Scholar 

  27. Thomas EL, Bozeman PM, Jefferson MM, King CC (1995) J Biol Chem 270:2906

    Article  CAS  Google Scholar 

  28. Carr AC, Winterbourn CC, van den Berg JJ (1996) Arch Biochem Biophys 327:227

    Article  CAS  Google Scholar 

  29. Vissers M, Carr A, Chapman A (1998) Biochem J 330:131

    Article  CAS  Google Scholar 

  30. Henderson JP, Byun J, Mueller DM, Heinecke JW (2001) Biochemistry 40:2052

    Article  CAS  Google Scholar 

  31. Henderson JP, Byun J, Williams MV, McCormick ML, Parks WC, Ridnour LA, Heinecke JW (2001) Proc Natl Acad Sci USA 98:1631

    Article  CAS  Google Scholar 

  32. Drozak J, Veiga-da-Cunha M, Vertommen D, Stroobant V, Van Schaftingen E (2010) J Biol Chem 285:9346

    Article  CAS  Google Scholar 

  33. Quinn PJ, Boldyrev AA, Formazuyk VE (1992) Mol Aspects Med 13:379

    Article  CAS  Google Scholar 

  34. Hipkiss AR (2009) Adv Food Nutr Res 57:87

    Article  CAS  Google Scholar 

  35. Hipkiss AR, Worthington VC, Himsworth DTJ, Herwig W (1998) Biochim Biophys Acta 1380:46

    Article  CAS  Google Scholar 

  36. Pattison DI, Davies MJ (2006) Biochemistry 45:8152

    Article  CAS  Google Scholar 

  37. Karton A, O’Reilly RJ, Pattison DI, Davies MJ, Radom L (2012) J Am Chem Soc 134:19240

    Article  CAS  Google Scholar 

  38. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  39. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  40. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) J Phys Chem 98:11623

    Article  CAS  Google Scholar 

  41. Grimme S, Ehrlich S, Goerigk L (2011) J Comput Chem 32:1456

    Article  CAS  Google Scholar 

  42. Grimme S, Antony J, Ehrlich S, Krieg H (2010) J Chem Phys 132:154104

    Article  Google Scholar 

  43. Grimme S (2011) WIREs Comput Mol Sci 1:211

    Article  CAS  Google Scholar 

  44. Becke AD, Johnson ER (2005) J Chem Phys 123:154101

    Article  Google Scholar 

  45. Marenich AV, Cramer CJ, Truhlar DG (2009) J Phys Chem B 113:6378

    Article  CAS  Google Scholar 

  46. Gonzalez C, Schlegel HB (1989) J Chem Phys 90:2154

    Article  CAS  Google Scholar 

  47. Gonzalez C, Schlegel HB (1990) J Phys Chem 94:5523

    Article  CAS  Google Scholar 

  48. Hanwell MD, Curtis DE, Lonie DC, Vandermeersch T, Zurek E, Hutchison GR (2012) J Cheminform 4:17

    Article  CAS  Google Scholar 

  49. Curtiss LA, Redfern PC, Raghavachari K (2007) J Chem Phys 127:124105

    Article  Google Scholar 

  50. Curtiss LA, Redfern PC, Raghavachari K (2011) Wiley Interdiscip Rev Comput Mol Sci 1:810

    Article  CAS  Google Scholar 

  51. Karton A (2016) Wiley Interdiscip Rev Comput Mol Sci 6:292

    Article  CAS  Google Scholar 

  52. Curtiss LA, Redfern PC, Raghavachari K (2005) J Chem Phys 123:124107

    Article  Google Scholar 

  53. Curtiss LA, Redfern PC, Raghavachari K (2010) Chem Phys Lett 499:168

    Article  CAS  Google Scholar 

  54. Karton A, O’Reilly RJ, Radom L (2012) J Phys Chem A 116:4211

    Article  CAS  Google Scholar 

  55. Karton A, Goerigk L (2015) J Comput Chem 36:622

    Article  CAS  Google Scholar 

  56. Yu L-J, Sarrami F, O’Reilly RJ, Karton A (2015) Chem Phys 458:1

    Article  CAS  Google Scholar 

  57. Cossi M, Rega N, Scalmani G, Barone V (2003) J Comput Chem 24:669

    Article  CAS  Google Scholar 

  58. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA et al (2009) Gaussian 09, Revision E.01, Gaussian Inc., Wallingford, CT

    Google Scholar 

  59. Cioslowski J (1989) J Am Chem Soc 111:8333

    Article  CAS  Google Scholar 

  60. De Proft F, Martin JML., Geerlings P (1996) Chem Phys Lett 250:393

    Article  Google Scholar 

  61. Diez RP, Baran EJ (2003) J Mol Struct 621:245

    Article  Google Scholar 

  62. Hansch C, Leo A, Taft RW (1991) Chem Rev 91:165

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is dedicated to our colleague and friend Dr. Ming Wen Shi, who tragically passed away earlier this year. This research was undertaken with the assistance of resources from the National Computational Infrastructure (NCI), which is supported by the Australian Government. We also acknowledge the system administration support provided by the Faculty of Science at the University of Western Australia to the Linux cluster of the Karton group. We gratefully acknowledge the provision of an Australian Postgraduate Award (to F.S.), and an Australian Research Council (ARC) Discovery Early Career Researcher Award (to A.K., Project No. DE140100311). We would also like to thank the reviewers of the manuscript for their valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Karton.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 259 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarrami, F., Yu, LJ. & Karton, A. Computational design of bio-inspired carnosine-based HOBr antioxidants. J Comput Aided Mol Des 31, 905–913 (2017). https://doi.org/10.1007/s10822-017-0060-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-017-0060-3

Keywords

Navigation