Skip to main content
Log in

Structural rationale for the cross-resistance of tumor cells bearing the A399V variant of elongation factor eEF1A1 to the structurally unrelated didemnin B, ternatin, nannocystin A and ansatrienin B

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

At least four classes of structurally distinct natural products with potent antiproliferative activities target the translation elongation factor eEF1A1, which is best known as the G-protein that delivers amino acyl transfer RNAs (aa-tRNAs) to ribosomes during mRNA translation. We present molecular models in atomic detail that provide a common structural basis for the high-affinity binding of didemnin B, ternatin, ansatrienin B and nannocystin A to eEF1A1, as well as a rationale based on molecular dynamics results that accounts for the deleterious effect of replacing alanine 399 with valine. The proposed binding site, at the interface between domains I and III, is eminently hydrophobic and exists only in the GTP-bound conformation. Drug binding at this site is expected to disrupt neither loading of aa-tRNAs nor GTP hydrolysis but would give rise to stabilization of this particular conformational state, in consonance with reported experimental findings. The experimental solution of the three-dimensional structure of mammalian eEF1A1 has proved elusive so far and the highly homologous eEF1A2 from rabbit muscle has been crystallized and solved only as a homodimer in a GDP-bound conformation. Interestingly, in this dimeric structure the large interdomain cavity where the drugs studied are proposed to bind is occupied by a mostly hydrophobic α-helix from domain I of the same monomer. Since binding of this α-helix and any of these drugs to domain III of eEF1A(1/2) is, therefore, mutually exclusive and involves two distinct protein conformations, one intriguing possibility that emerges from our study is that the potent antiproliferative effect of these natural products may arise not only from inhibition of protein synthesis, which is the current dogma, but also from interference with some other non-canonical functions. From this standpoint, this type of drugs could be considered antagonists of eEF1A1/2 oligomerization, a hypothesis that opens up novel areas of research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

eEF1A:

Eukaryotic elongation factor 1A

uMD:

Unrestrained molecular dynamics

MM-ISMSA:

Molecular mechanics implicit solvent model surface area

References

  1. Kataoka T (2012) Translation inhibitors and their unique biological properties. Eur J Pharmacol 676(1–3):1–5. doi:10.1016/j.ejphar.2011.11.044

    Article  CAS  Google Scholar 

  2. Watabe M, Kakeya H, Onose R, Osada H (2000) Activation of MST/Krs and c-Jun N-terminal kinases by different signaling pathways during cytotrienin A-induced apoptosis. J Biol Chem 275(12):8766–8771

    Article  CAS  Google Scholar 

  3. Yamada Y, Taketani S, Osada H, Kataoka T (2011) Cytotrienin A, a translation inhibitor that induces ectodomain shedding of TNF receptor 1 via activation of ERK and p38 MAP kinase. Eur J Pharmacol 667(1–3):113–119. doi:10.1016/j.ejphar.2011.05.072

    Article  CAS  Google Scholar 

  4. Monaghan D, O’Connell E, Cruickshank FL, O’Sullivan B, Giles FJ, Hulme AN, Fearnhead HO (2014) Inhibition of protein synthesis and JNK activation are not required for cell death induced by anisomycin and anisomycin analogues. Biochem Biophys Res Commun 443(2):761–767. doi:10.1016/j.bbrc.2013.12.041

    Article  CAS  Google Scholar 

  5. Ruller S, Stahl C, Kohler G, Eickhoff B, Breder J, Schlaak M, van der Bosch J (1999) Sensitization of tumor cells to ribotoxic stress-induced apoptotic cell death: a new therapeutic strategy. Clin Cancer Res 5(10):2714–2725

    CAS  Google Scholar 

  6. Kakeya H, Onose R, Osada H (1998) Caspase-mediated activation of a 36-kDa myelin basic protein kinase during anticancer drug-induced apoptosis. Cancer Res 58(21):4888–4894

    CAS  Google Scholar 

  7. Rinehart KL Jr, Gloer JB, Hughes RG Jr, Renis HE, McGovren JP, Swynenberg EB, Stringfellow DA, Kuentzel SL, Li LH (1981) Didemnins: antiviral and antitumor depsipeptides from a Caribbean tunicate. Science 212(4497):933–935

    Article  CAS  Google Scholar 

  8. Xu Y, Kersten RD, Nam SJ, Lu L, Al-Suwailem AM, Zheng H, Fenical W, Dorrestein PC, Moore BS, Qian PY (2012) Bacterial biosynthesis and maturation of the didemnin anti-cancer agents. J Am Chem Soc 134(20):8625–8632. doi:10.1021/ja301735a

    Article  CAS  Google Scholar 

  9. Crampton SL, Adams EG, Kuentzel SL, Li LH, Badiner G, Bhuyan BK (1984) Biochemical and cellular effects of didemnins A and B. Cancer Res 44(5):1796–1801

    CAS  Google Scholar 

  10. Crews CM, Collins JL, Lane WS, Snapper ML, Schreiber SL (1994) GTP-dependent binding of the antiproliferative agent didemnin to elongation factor 1a. J Biol Chem 269(22):15411–15414

    CAS  Google Scholar 

  11. Mateyak MK, Kinzy TG (2010) eEF1A: thinking outside the ribosome. J Biol Chem 285(28):21209–21213. doi:10.1074/jbc.R110.113795

    Article  CAS  Google Scholar 

  12. Andersen GR, Nissen P, Nyborg J (2003) Elongation factors in protein biosynthesis. Trends Biochem Sci 28(8):434–441. doi:10.1016/S0968-0004(03)00162-2

    Article  CAS  Google Scholar 

  13. Berchtold H, Reshetnikova L, Reiser CO, Schirmer NK, Sprinzl M, Hilgenfeld R (1993) Crystal structure of active elongation factor Tu reveals major domain rearrangements. Nature 365(6442):126–132. doi:10.1038/365126a0

    Article  CAS  Google Scholar 

  14. Marco E, Martin-Santamaria S, Cuevas C, Gago F (2004) Structural basis for the binding of didemnins to human elongation factor eEF1A and rationale for the potent antitumor activity of these marine natural products. J Med Chem 47(18):4439–4452. doi:10.1021/jm0306428

    Article  CAS  Google Scholar 

  15. Carelli JD, Sethofer SG, Smith GA, Miller HR, Simard JL, Merrick WC, Jain RK, Ross NT, Taunton J (2015) Ternatin and improved synthetic variants kill cancer cells by targeting the elongation factor-1A ternary complex. Elife 4:e10222. doi:10.7554/eLife.10222

    Article  Google Scholar 

  16. Krastel P, Roggo S, Schirle M, Ross NT, Perruccio F, Aspesi P Jr, Aust T, Buntin K, Estoppey D, Liechty B, Mapa F, Memmert K, Miller H, Pan X, Riedl R, Thibaut C, Thomas J, Wagner T, Weber E, Xie X, Schmitt EK, Hoepfner D (2015) Nannocystin A: an elongation factor 1 inhibitor from myxobacteria with differential anti-cancer properties. Angew Chem Int Ed Engl 54(35):10149–10154. doi:10.1002/anie.201505069

    Article  CAS  Google Scholar 

  17. Soares DC, Barlow PN, Newbery HJ, Porteous DJ, Abbott CM (2009) Structural models of human eEF1A1 and eEF1A2 reveal two distinct surface clusters of sequence variation and potential differences in phosphorylation. PLoS ONE 4(7):e6315. doi:10.1371/journal.pone.0006315

    Article  Google Scholar 

  18. Miller R, Galitsky NM, Duax WL, Langs DA, Pletnev VZ, Ivanov VT (1993) Molecular structures of two crystalline forms of the cyclic heptapeptide antibiotic ternatin, cyclo[-b-OH-D-Leu-D-Ile-(NMe)Ala-(NMe)Leu-Leu-(NMe)Ala-D-(NMe)Ala-]. Int J Pept Protein Res 42(6):539–549

    Article  CAS  Google Scholar 

  19. Shimokawa K, Mashima I, Asai A, Yamada K, Kita M, Uemura D (2006) (–)-Ternatin, a highly N-methylated cyclic heptapeptide that inhibits fat accumulation: structure and synthesis. Tetrahedron Lett 47(26):4445–4448. doi:10.1016/j.tetlet.2006.04.073

    Article  CAS  Google Scholar 

  20. Shimokawa K, Iwase Y, Miwa R, Yamada K, Uemura D (2008) Whole structure-activity relationships of the fat-accumulation inhibitor (-)-ternatin: recognition of the importance of each amino acid residue. J Med Chem 51(19):5912–5914. doi:10.1021/jm800741n

    Article  CAS  Google Scholar 

  21. Hayashi Y, Shoji M, Ishikawa H, Yamaguchi J, Tamura T, Imai H, Nishigaya Y, Takabe K, Kakeya H, Osada H (2008) The asymmetric total synthesis of (+)-cytotrienin A, an ansamycin-type anticancer drug. Angew Chem Int Ed Engl 47(35):6657–6660. doi:10.1002/anie.200802079

    Article  CAS  Google Scholar 

  22. Zhang HP, Kakeya H, Osada H (1997) Novel triene-ansamycins, cytotrienins A and B, inducing apoptosis on human leukemia HL-60 cells. Tetrahedron Lett 38:1789–1792

    Article  CAS  Google Scholar 

  23. Lindqvist L, Robert F, Merrick W, Kakeya H, Fraser C, Osada H, Pelletier J (2010) Inhibition of translation by cytotrienin A—a member of the ansamycin family. RNA 16(12):2404–2413. doi:10.1261/rna.2307710

    Article  CAS  Google Scholar 

  24. Hoffmann H, Kogler H, Heyse W, Matter H, Caspers M, Schummer D, Klemke-Jahn C, Bauer A, Penarier G, Debussche L, Bronstrup M (2015) Discovery, structure elucidation, and biological characterization of nannocystin A, a macrocyclic myxobacterial metabolite with potent antiproliferative properties. Angew Chem Int Ed Engl 54(35):10145–10148. doi:10.1002/anie.201411377

    Article  CAS  Google Scholar 

  25. Liu K, Watanabe E, Kokubo H (2017) Exploring the stability of ligand binding modes to proteins by molecular dynamics simulations. J Comput Aided Mol Des 31(2):201–211. doi:10.1007/s10822-016-0005-2

    Article  CAS  Google Scholar 

  26. Shao S, Murray J, Brown A, Taunton J, Ramakrishnan V, Hegde RS (2016) Decoding mammalian ribosome-mRNA states by translational GTPase complexes. Cell 167(5):1229–1240 e1215. doi:10.1016/j.cell.2016.10.046

    Article  CAS  Google Scholar 

  27. Ahuja D, Vera MD, SirDeshpande BV, Morimoto H, Williams PG, Joullie MM, Toogood PL (2000) Inhibition of protein synthesis by didemnin B: how EF-1a mediates inhibition of translocation. BioChemistry 39(15):4339–4346

    Article  CAS  Google Scholar 

  28. Hossain MB, van der Helm D, Antel J, Sheldrick GM, Sanduja SK, Weinheimer AJ (1988) Crystal and molecular structure of didemnin B, an antiviral and cytotoxic depsipeptide. Proc Natl Acad Sci USA 85(12):4118–4122

    Article  CAS  Google Scholar 

  29. Thomas IR, Bruno IJ, Cole JC, Macrae CF, Pidcock E, Wood PA (2010) WebCSD: the online portal to the Cambridge Structural Database. J Appl Crystallogr 43(Pt 2):362–366. doi:10.1107/S0021889810000452

    Article  CAS  Google Scholar 

  30. DeLano WL (2016) The PyMOL Molecular Graphics System v. 1.8. Schrödinger, LLC

  31. Kang Q, Shen Y, Bai L (2012) Biosynthesis of 3,5-AHBA-derived natural products. Nat Prod Rep 29(2):243–263. doi:10.1039/c2np00019a

    Article  CAS  Google Scholar 

  32. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark MJ, Heyd J, Brothers EN, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Gaussian, Inc., Wallingford

  33. Maier JA, Martinez C, Kasavajhala K, Wickstrom L, Hauser KE, Simmerling C (2015) ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB. J Chem Theory Comput 11(8):3696–3713. doi:10.1021/acs.jctc.5b00255

    Article  CAS  Google Scholar 

  34. Steinbrecher T, Latzer J, Case DA (2012) Revised AMBER parameters for bioorganic phosphates. J Chem Theory Comput 8(11):4405–4412. doi:10.1021/ct300613v

    Article  CAS  Google Scholar 

  35. de la Fuente JA, Manzanaro S, Martin MJ, de Quesada TG, Reymundo I, Luengo SM, Gago F (2003) Synthesis, activity, and molecular modeling studies of novel human aldose reductase inhibitors based on a marine natural product. J Med Chem 46(24):5208–5221. doi:10.1021/jm030957n

    Article  Google Scholar 

  36. Crepin T, Shalak VF, Yaremchuk AD, Vlasenko DO, McCarthy A, Negrutskii BS, Tukalo MA, El’skaya AV (2014) Mammalian translation elongation factor eEF1A2: X-ray structure and new features of GDP/GTP exchange mechanism in higher eukaryotes. Nucleic Acids Res 42(20):12939–12948. doi:10.1093/nar/gku974

    Article  CAS  Google Scholar 

  37. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30(16):2785–2791. doi:10.1002/jcc.21256

    Article  CAS  Google Scholar 

  38. Salomon-Ferrer R, Götz AW, Poole D, Le Grand S, Walker RC (2013) Routine microsecond molecular dynamics simulations with AMBER on GPUs. 2. Explicit solvent Particle Mesh Ewald. J Chem Theory Comput 9(9):3878–3888. doi:10.1021/ct400314y

    Article  CAS  Google Scholar 

  39. Darden T, York D, Pedersen L (1993) Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems. J Chem Phys 98(12):10089–10092. doi:10.1063/1.464397

    Article  CAS  Google Scholar 

  40. Roe DR, Cheatham TE 3rd (2013) PTRAJ and CPPTRAJ: software for processing and analysis of molecular dynamics trajectory data. J Chem Theory Comput 9(7):3084–3095. doi:10.1021/ct400341p

    Article  CAS  Google Scholar 

  41. Brunger AT, Adams PD (2002) Molecular dynamics applied to X-ray structure refinement. Acc Chem Res 35(6):404–412

    Article  CAS  Google Scholar 

  42. Klett J, Núñez-Salgado A, Dos Santos HG, Cortés-Cabrera Á, Perona A, Gil-Redondo R, Abia D, Gago F, Morreale A (2012) MM-ISMSA: an ultrafast and accurate scoring function for protein–protein docking. J Chem Theory Comput 8(9):3395–3408. doi:10.1021/ct300497z

    Article  CAS  Google Scholar 

  43. Morreale A, Gil-Redondo R, Ortiz AR (2007) A new implicit solvent model for protein-ligand docking. Proteins 67(3):606–616. doi:10.1002/prot.21269

    Article  CAS  Google Scholar 

  44. Desiraju GR (2002) Hydrogen bridges in crystal engineering: interactions without borders. Acc Chem Res 35(7):565–573. doi:10.1021/ar010054t

    Article  CAS  Google Scholar 

  45. Hossain MB, Van Der Helm D, Antel J, Sheldrick GM, Weinheimer AJ, Sanduja SK (1996) Crystal and molecular structure of didemnin A, an antiviral depsipeptide. Int J Pept Protein Res 47(1–2):20–27

    CAS  Google Scholar 

  46. Krimmer SG, Cramer J, Betz M, Fridh V, Karlsson R, Heine A, Klebe G (2016) Rational design of thermodynamic and kinetic binding profiles by optimizing surface water networks coating protein-bound ligands. J Med Chem 59(23):10530–10548. doi:10.1021/acs.jmedchem.6b00998

    Article  CAS  Google Scholar 

  47. Schmidtke P, Luque FJ, Murray JB, Barril X (2011) Shielded hydrogen bonds as structural determinants of binding kinetics: application in drug design. J Am Chem Soc 133(46):18903–18910. doi:10.1021/ja207494u

    Article  CAS  Google Scholar 

  48. Ruiz-Carmona S, Schmidtke P, Luque FJ, Baker L, Matassova N, Davis B, Roughley S, Murray J, Hubbard R, Barril X (2017) Dynamic undocking and the quasi-bound state as tools for drug discovery. Nat Chem 9(3):201–206. doi:10.1038/nchem.2660

    Article  CAS  Google Scholar 

  49. Williams DH, Stephens E, O’Brien DP, Zhou M (2004) Understanding noncovalent interactions: ligand binding energy and catalytic efficiency from ligand-induced reductions in motion within receptors and enzymes. Angew Chem Int Ed 43(48):6596–6616. doi:10.1002/anie.200300644

    Article  CAS  Google Scholar 

  50. Calderone CT, Williams DH (2001) An enthalpic component in cooperativity: the relationship between enthalpy, entropy, and noncovalent structure in weak associations. J Am Chem Soc 123(26):6262–6267. doi:10.1021/ja003016y

    Article  CAS  Google Scholar 

  51. Andersen GR, Valente L, Pedersen L, Kinzy TG, Nyborg J (2001) Crystal structures of nucleotide exchange intermediates in the eEF1A-eEF1Ba complex. Nat Struct Biol 8(6):531–534. doi:10.1038/88598

    Article  CAS  Google Scholar 

  52. Newbery HJ, Loh DH, O’Donoghue JE, Tomlinson VA, Chau YY, Boyd JA, Bergmann JH, Brownstein D, Abbott CM (2007) Translation elongation factor eEF1A2 is essential for post-weaning survival in mice. J Biol Chem 282(39):28951–28959. doi:10.1074/jbc.M703962200

    Article  CAS  Google Scholar 

  53. Kahns S, Lund A, Kristensen P, Knudsen CR, Clark BF, Cavallius J, Merrick WC (1998) The elongation factor 1 A-2 isoform from rabbit: cloning of the cDNA and characterization of the protein. Nucleic Acids Res 26(8):1884–1890

    Article  CAS  Google Scholar 

  54. Anand N, Murthy S, Amann G, Wernick M, Porter LA, Cukier IH, Collins C, Gray JW, Diebold J, Demetrick DJ, Lee JM (2002) Protein elongation factor EEF1A2 is a putative oncogene in ovarian cancer. Nat Genet 31(3):301–305. doi:10.1038/ng904

    CAS  Google Scholar 

  55. Li Z, Qi CF, Shin DM, Zingone A, Newbery HJ, Kovalchuk AL, Abbott CM, Morse HC (2010) 3rd eEF1A2 promotes cell growth, inhibits apoptosis and activates JAK/STAT and AKT signaling in mouse plasmacytomas. PLoS ONE 5(5):e10755. doi:10.1371/journal.pone.0010755

    Article  Google Scholar 

  56. Vera M, Pani B, Griffiths LA, Muchardt C, Abbott CM, Singer RH, Nudler E (2014) The translation elongation factor eEF1A1 couples transcription to translation during heat shock response. Elife 3:e03164. doi:10.7554/eLife.03164

    Article  Google Scholar 

  57. Jeganathan S, Lee JM (2007) Binding of elongation factor eEF1A2 to phosphatidylinositol 4-kinase beta stimulates lipid kinase activity and phosphatidylinositol 4-phosphate generation. J Biol Chem 282(1):372–380. doi:10.1074/jbc.M602955200

    Article  CAS  Google Scholar 

  58. Pellegrino R, Calvisi DF, Neumann O, Kolluru V, Wesely J, Chen X, Wang C, Wuestefeld T, Ladu S, Elgohary N, Bermejo JL, Radlwimmer B, Zornig M, Zender L, Dombrowski F, Evert M, Schirmacher P, Longerich T (2014) EEF1A2 inactivates p53 by way of PI3K/AKT/mTOR-dependent stabilization of MDM4 in hepatocellular carcinoma. Hepatology 59(5):1886–1899. doi:10.1002/hep.26954

    Article  CAS  Google Scholar 

  59. Hotokezaka Y, Tobben U, Hotokezaka H, Van Leyen K, Beatrix B, Smith DH, Nakamura T, Wiedmann M (2002) Interaction of the eukaryotic elongation factor 1A with newly synthesized polypeptides. J Biol Chem 277(21):18545–18551. doi:10.1074/jbc.M201022200

    Article  CAS  Google Scholar 

  60. Gonen H, Smith CE, Siegel NR, Kahana C, Merrick WC, Chakraburtty K, Schwartz AL, Ciechanover A (1994) Protein synthesis elongation factor EF-1a is essential for ubiquitin-dependent degradation of certain N a-acetylated proteins and may be substituted for by the bacterial elongation factor EF-Tu. Proc Natl Acad Sci USA 91(16):7648–7652

    Article  CAS  Google Scholar 

  61. Chuang SM, Chen L, Lambertson D, Anand M, Kinzy TG, Madura K (2005) Proteasome-mediated degradation of cotranslationally damaged proteins involves translation elongation factor 1A. Mol Cell Biol 25(1):403–413. doi:10.1128/MCB.25.1.403-413.2005

    Article  CAS  Google Scholar 

  62. Bunai F, Ando K, Ueno H, Numata O (2006) Tetrahymena eukaryotic translation elongation factor 1A (eEF1A) bundles filamentous actin through dimer formation. J Biochem 140(3):393–399. doi:10.1093/jb/mvj169

    Article  CAS  Google Scholar 

  63. Shiina N, Gotoh Y, Kubomura N, Iwamatsu A, Nishida E (1994) Microtubule severing by elongation factor 1a. Science 266(5183):282–285

    Article  CAS  Google Scholar 

  64. Lamberti A, Sanges C, Chambery A, Migliaccio N, Rosso F, Di Maro A, Papale F, Marra M, Parente A, Caraglia M, Abbruzzese A, Arcari P (2011) Analysis of interaction partners for eukaryotic translation elongation factor 1A M-domain by functional proteomics. Biochimie 93(10):1738–1746. doi:10.1016/j.biochi.2011.06.006

    Article  CAS  Google Scholar 

  65. Morita K, Bunai F, Numata O (2008) Roles of three domains of Tetrahymena eEF1A in bundling F-actin. Zoolog Sci 25(1):22–29. doi:10.2108/zsj.25.22

    Article  CAS  Google Scholar 

  66. Migliaccio N, Ruggiero I, Martucci NM, Sanges C, Arbucci S, Tate R, Rippa E, Arcari P, Lamberti A (2015) New insights on the interaction between the isoforms 1 and 2 of human translation elongation factor 1A. Biochimie 118:1–7. doi:10.1016/j.biochi.2015.07.021

    Article  CAS  Google Scholar 

  67. Khacho M, Mekhail K, Pilon-Larose K, Pause A, Cote J, Lee S (2008) eEF1A is a novel component of the mammalian nuclear protein export machinery. Mol Biol Cell 19(12):5296–5308. doi:10.1091/mbc.E08-06-0562

    Article  CAS  Google Scholar 

  68. Itagaki K, Naito T, Iwakiri R, Haga M, Miura S, Saito Y, Owaki T, Kamiya S, Iyoda T, Yajima H, Iwashita S, Ejiri S, Fukai F (2012) Eukaryotic translation elongation factor 1A induces anoikis by triggering cell detachment. J Biol Chem 287(19):16037–16046. doi:10.1074/jbc.M111.308122

    Article  CAS  Google Scholar 

  69. Boratko A, Peter M, Thalwieser Z, Kovacs E, Csortos C (2015) Elongation factor-1A1 is a novel substrate of the protein phosphatase 1-TIMAP complex. Int J Biochem Cell Biol 69:105–113. doi:10.1016/j.biocel.2015.10.021

    Article  CAS  Google Scholar 

  70. Fardini Y, Dehennaut V, Lefebvre T, Issad T (2013) O-GlcNAcylation: a new cancer hallmark?. Front Endocrinol 4:99. doi:10.3389/fendo.2013.00099

    Article  Google Scholar 

  71. Hendriks IA, Lyon D, Young C, Jensen LJ, Vertegaal AC, Nielsen ML (2017) Site-specific mapping of the human SUMO proteome reveals co-modification with phosphorylation. Nat Struct Mol Biol 24(3):325–336. doi:10.1038/nsmb.3366

    Article  CAS  Google Scholar 

  72. Eifler K, Vertegaal AC (2015) Mapping the SUMOylated landscape. FEBS J 282(19):3669–3680. doi:10.1111/febs.13378

    Article  CAS  Google Scholar 

  73. Koiwai K, Maezawa S, Hayano T, Iitsuka M, Koiwai O (2008) BPOZ-2 directly binds to eEF1A1 to promote eEF1A1 ubiquitylation and degradation and prevent translation. Genes Cells 13(6):593–607. doi:10.1111/j.1365-2443.2008.01191.x

    Article  CAS  Google Scholar 

  74. Losada A, Muñoz-Alonso MJ, García C, Sánchez-Murcia PA, Martinez-Leal JF, Domínguez JM, Lillo MP, Gago F, Galmarini CM (2016) Translation elongation factor eEF1A2 is a novel anticancer target for the marine natural product plitidepsin. Sci Rep 6:35100. doi:10.1038/srep35100

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Prof. Antonio Jiménez-Ruiz for many fruitful discussions and help with the StatGraphics program.

Funding

Financial support from the Spanish Ministerio de Economía y Competitividad [SAF2015-64629-C2-2-R], Comunidad Autónoma de Madrid [BIPEDD-2-CM Project, ref. S-2010/BMD-2457], and PharmaMar S.A.U. is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

Participated in research design: PAS, ACC, and FG. Conducted experiments: PAS and FG. Contributed new analytic tools: ACC. Performed data analysis: PAS, ACC, and FG. Wrote or contributed to the writing of the manuscript: PAS, ACC, and FG.

Corresponding author

Correspondence to Federico Gago.

Additional information

This work is dedicated to Prof. Manuel Feria (Department of Pharmacology, University of La Laguna, Santa Cruz de Tenerife, Spain) on occasion of his retirement.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sánchez-Murcia, P.A., Cortés-Cabrera, Á. & Gago, F. Structural rationale for the cross-resistance of tumor cells bearing the A399V variant of elongation factor eEF1A1 to the structurally unrelated didemnin B, ternatin, nannocystin A and ansatrienin B. J Comput Aided Mol Des 31, 915–928 (2017). https://doi.org/10.1007/s10822-017-0066-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-017-0066-x

Keywords

Navigation