Skip to main content

Advertisement

Log in

A molecular dynamics investigation of CDK8/CycC and ligand binding: conformational flexibility and implication in drug discovery

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Abnormal activity of cyclin-dependent kinase 8 (CDK8) along with its partner protein cyclin C (CycC) is a common feature of many diseases including colorectal cancer. Using molecular dynamics (MD) simulations, this study determined the dynamics of the CDK8-CycC system and we obtained detailed breakdowns of binding energy contributions for four type-I and five type-II CDK8 inhibitors. We revealed system motions and conformational changes that will affect ligand binding, confirmed the essentialness of CycC for inclusion in future computational studies, and provide guidance in development of CDK8 binders. We employed unbiased all-atom MD simulations for 500 ns on twelve CDK8-CycC systems, including apoproteins and protein–ligand complexes, then performed principal component analysis (PCA) and measured the RMSF of key regions to identify protein dynamics. Binding pocket volume analysis identified conformational changes that accompany ligand binding. Next, H-bond analysis, residue-wise interaction calculations, and MM/PBSA were performed to characterize protein–ligand interactions and find the binding energy. We discovered that CycC is vital for maintaining a proper conformation of CDK8 to facilitate ligand binding and that the system exhibits motion that should be carefully considered in future computational work. Surprisingly, we found that motion of the activation loop did not affect ligand binding. Type-I and type-II ligand binding is driven by van der Waals interactions, but electrostatic energy and entropic penalties affect type-II binding as well. Binding of both ligand types affects protein flexibility. Based on this we provide suggestions for development of tighter-binding CDK8 inhibitors and offer insight that can aid future computational studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Malumbres M (2014) Cyclin-dependent kinases. Genome Biol 15(6):122

    Article  PubMed  PubMed Central  Google Scholar 

  2. Galbraith MD, Donner AJ, Espinosa JM (2010) CDK8: a positive regulator of transcription. Transcription 1:4–12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Tsutsui T, Fukasawa R, Tanaka A, Hirose Y, Ohkuma Y (2011) Identification of target genes for the CDK subunits of the mediator complex. Genes Cells 16:1208–1218

    Article  CAS  PubMed  Google Scholar 

  4. Allen BL, Taatjes DJ (2015) The mediator complex: a central integrator of transcription. Nat Rev Mol Cell Biol 16:155–166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rickert P, Seghezzi W, Shanahan F, Cho H, Lees E (1996) Cyclin C/CDK8 is a novel CTD kinase associated with RNA polymerase II. Oncogene 12:2631–2640

    CAS  PubMed  Google Scholar 

  6. Xu W, Ji JY (2011) Dysregulation of CDK8 and cyclin C in tumorigenesis. J Genet Genomics 38(10):439–452

    Article  CAS  PubMed  Google Scholar 

  7. Conaway RC, Sato S, Tomomori-Sato C, Yao T, Conaway JW (2005) The mammalian mediator complex and its role in transcriptional regulation. Trends Biochem Sci 30:250–255

    Article  CAS  PubMed  Google Scholar 

  8. Nemet J, Jelicic B, Rubelj I, Sopta M (2014) The two faces of Cdk8, a positive/negative regulator of transcription. Biochimie 97:22–27

    Article  CAS  PubMed  Google Scholar 

  9. Li N, Fassl A, Chick J, Inuzuka H, Li X, Mansour MR, Liu L, Wang H, King B, Shaik S et al (2014) Cyclin C Is a haploinsufficient tumour suppressor. Nat Cell Biol 16:1080–1091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Morris EJ, Ji JY, Yang F, Di Stefano L, Herr A, Moon NS, Kwon EJ, Haigis KM, Naar AM, Dyson NJ (2008) E2F1 represses beta-catenin transcription and is antagonized by both pRB and CDK8. Nature 455:552–556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Firestein R, Shima K, Nosho K, Irahara N, Baba Y, Bojarski E, Giovannucci EL, Hahn WC, Fuchs CS, Ogino S (2010) CDK8 expression in 470 colorectal cancers in relation to beta-catenin activation, other molecular alterations and patient survival. Int J Cancer 126:2863–2873

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Kim MY, Han SI, Lim SC (2011) Roles of cyclin-dependent kinase 8 and beta-catenin in the oncogenesis and progression of gastric adenocarcinoma. Int J Oncol 38:1375–1383

    CAS  PubMed  Google Scholar 

  13. Adler AS, McCleland ML, Truong T, Lau S, Modrusan Z, Soukup TM, Roose-Girma M, Blackwood EM, Firestein R (2012) CDK8 maintains tumor dedifferentiation and embryonic stem cell pluripotency. Cancer Res 72:2129–2139

    Article  CAS  PubMed  Google Scholar 

  14. Rosenbluh J, Wang X, Hahn WC (2014) Genomic insights into WNT/β-catenin signaling. Trends Pharmacol Sci 35(2):103–109

    Article  CAS  PubMed  Google Scholar 

  15. Broude EV, Győrffy B, Chumanevich AA et al (2015) Expression of CDK8 and CDK8-interacting genes as potential biomarkers in breast cancer. Curr Cancer Drug Targets 15(8):739–749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Raithatha S, Su T-C, Lourenco P, Goto S, Sadowski I (2012) Cdk8 regulates stability of the transcription factor Phd1 to control pseudohyphal differentiation of Saccharomyces cerevisiae. Mol Cell Biol 32(3):664–674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Alarcón C, Zaromytidou A-I, Xi Q, Gao S, Yu J, Fujisawa S, Barlas A, Miller AN, Manova-Todorova K, Macias MJ, Sapkota G, Pan D, Massagué J (2009) Nuclear CDKs drive Smad transcriptional activation and turnover in BMP and TGF-β pathways. Cell 139(4):757–769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rzymski T, Mikula M, Wiklik K et al (2015) CDK8 kinase: an emerging target in targeted cancer therapy. Biochim Biophys Acta 1854:1617–1629

    Article  CAS  PubMed  Google Scholar 

  19. Fryer CJ, White JB, Jones KA (2004) Mastermind recruits CycC:CDK8 to phosphorylate the notch ICD and coordinate activation with turnover. Mol Cell 16(4):509–520

    Article  CAS  PubMed  Google Scholar 

  20. Cee VJ, Chen DY, Lee MR, Nicolaou KC (2009) Cortistatin A is a high-affinity ligand of protein kinases ROCK, CDK8, and CDK11. Angew Chem Int Ed 48:8952–8957

    Article  CAS  Google Scholar 

  21. Porter DC, Farmaki E, Altilia S, Schools GP, West DK, Chen M et al (2012) Cyclin-dependent kinase 8 mediates chemotherapy-induced tumor-promoting paracrine activities. Proc Natl Acad Sci USA 109:13799–13804

    Article  PubMed  PubMed Central  Google Scholar 

  22. Mallinger A, Schiemann K, Rink C et al (2016) Discovery of potent, selective, and orally bioavailable small-molecule modulators of the mediator complex-associated kinases CDK8 and CDK19. J Med Chem 59(3):1078–1101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Koehler MF, Bergeron P, Blackwood EM, Bowman K, Clark KR, Firestein R, Kiefer JR, Maskos K, McCleland ML, Orren L, Salphati L, Schmidt S, Schneider EV, Wu J, Beresini MH (2016) Development of a potent, specific CDK8 kinase inhibitor which phenocopies CDK8/19 knockout cells. ACS Med Chem Lett 7(3):223–228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kumarasiri M, Teo T, Yu M, Philip S, Basnet SK, Albrecht H, Sykes MJ, Wang P, Wang S (2017) In search of novel CDK8 inhibitors by virtual screening. J Chem Inf Model 57(3):413–416

    Article  CAS  PubMed  Google Scholar 

  25. Schneider EV, Bottcher J, Huber R, Maskos K, Neumann L (2013) Structure–kinetic relationship study of CDK8/CycC specific compounds. Proc Natl Acad Sci USA 110:8081–8086

    Article  PubMed  PubMed Central  Google Scholar 

  26. Czodrowski P, Mallinger A, Wienke D, Esdar C, Pöschke O, Busch M, Rohdich F, Eccles SA, Ortiz-Ruiz MJ, Schneider R, Raynaud FI (2016) Structure-based optimization of potent, selective, and orally bioavailable CDK8 inhibitors discovered by high-throughput screening. J Med Chem 59(20):9337–9349

    Article  CAS  PubMed  Google Scholar 

  27. Wang T, Yang Z, Zhang Y, Yan W, Wang F, He L, Zhou Y, Chen L (2017) Discovery of novel CDK8 inhibitors using multiple crystal structures in docking-based virtual screening. Eur J Med Chem 129:275–286

    Article  CAS  PubMed  Google Scholar 

  28. Schiemann K, Mallinger A, Wienke D, Esdar C, Poeschke O, Busch M, Rohdich F, Eccles SA, Schneider R, Raynaud FI, Czodrowski P (2016) Discovery of potent and selective CDK8 inhibitors from an HSP90 pharmacophore. Bioorg Med Chem Lett 26(5):1443–1451

    Article  CAS  PubMed  Google Scholar 

  29. Ono K, Banno H, Okaniwa M, Hirayama T, Iwamura N, Hikichi Y, Murai S, Hasegawa M, Hasegawa Y, Yonemori K, Hata A, Aoyama K, Cary DR (2017) Design and synthesis of selective CDK8/19 dual inhibitors: discovery of 4,5-dihydrothieno[3′,4′:3,4] benzo[1,2-d] isothiazole derivatives. Bioorg Med Chem 25(8):2336–2350

    Article  CAS  PubMed  Google Scholar 

  30. Schneider EV, Böttcher J, Blaesse M, Neumann L, Huber R, Maskos K (2011) The structure of CDK8/CycC implicates specificity in the CDK/cyclin family and reveals interaction with a deep pocket binder. J Mol Biol 412(2):251–266

    Article  CAS  PubMed  Google Scholar 

  31. Callegari D, Lodola A, Pala D, Rivara S, Mor M, Rizzi A, Capelli AM (2017) Metadynamics simulations distinguish short-and long-residence-time inhibitors of cyclin-dependent kinase 8. J Chem Inf Model 57(2):159–169

    Article  CAS  PubMed  Google Scholar 

  32. Xu W, Amire-Brahimi B, Xie X-J, Huang L, Ji J-Y (2014) All-atomic molecular dynamic studies of human CDK8: insight into the a-loop, point mutations and binding with its partner CycC. Comput Biol Chem 51:1–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Biasini M, Bienert S, Waterhouse A, Arnold K, Studer G, Schmidt T, Kiefer F, Cassarino TG, Bertoni M, Bordoli L, Schwede T (2014) SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res 42(W1):W252–W258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bordoli L, Kiefer F, Arnold K, Benkert P, Battey J, Schwede T (2009) Protein structure homology modelling using SWISS-MODEL Workspace. Nat Protoc 4:1

    Article  CAS  PubMed  Google Scholar 

  35. Arnold K, Bordoli L, Kopp J, Schwede T (2006) The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22:195–201

    Article  CAS  PubMed  Google Scholar 

  36. Case DA, Babin V, Berryman JT et al (2014) Amber 14. University of California, San Francisco

    Google Scholar 

  37. Case DA, Cheatham TE, Darden T, Gohlke H, Luo R et al (2005) The amber biomolecular simulation programs. J Comput Chem 26:1668–1688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Goetz AW, Williamson MJ, Xu D, Poole D, Le Grand S et al (2012) Routine microsecond molecular dynamics simulations with AMBER on GPUs. 1: generalized born. J Chem Theory Comput 8:1542–1555

    Article  CAS  Google Scholar 

  39. Hornak V, Abel R, Okur A, Strockbine B, Roitberg A et al (2006) Comparison of multiple amber force fields and development of improved protein backbone parameters. Proteins 65:712–725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang JM, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general amber force field. J Comput Chem 25:1157–1174

    Article  CAS  PubMed  Google Scholar 

  41. Ozpinar GA, Peukert W, Clark T An improved generalized AMBER force field (GAFF) for urea. J Mol Model 16:1427–1440

  42. Georgescu RE, Alexov EG, Gunner MR (2002) Combining conformational flexibility and continuum electrostatics for calculating pKa’s in proteins. Biophys J 83:1731–1748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Alexov E, Gunner MR (1997) Incorporating protein conformational flexibility into pH-titration calculations: results on T4 Lysozyme. Biophys J 74:2075–2093

    Article  Google Scholar 

  44. Sondergaard CR, Olsson MHM, Rostkowski M, Jensen JH (2011) Improved treatment of ligands and coupling effects in empirical calculation and rationalization of pKa values. J Chem Theory Comput 7(7):2284–2295

    Article  CAS  PubMed  Google Scholar 

  45. Olsson MHM, Sondergaard CR, Rostkowski M, Jensen JH (2011) PROPKA3: consistent treatment of internal and surface residues in empirical pKa predictions. J Chem Theory Comput 7(2):525–537

    Article  CAS  PubMed  Google Scholar 

  46. Wang L, Li L, Alexov E (2015) pKa predictions for proteins, RNAs and DNAs with the Gaussian dielectric function using DelPhiPKa. Proteins 83(12):2117–2125

    Article  CAS  Google Scholar 

  47. Wang L, Zhang M, Alexov E (2015) DelPhiPKa Web Server: predicting pKa of proteins, RNAs and DNAs. Bioinformatics 32(4):614–615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935

    Article  CAS  Google Scholar 

  49. Doll JD, Dion DR (1976) Generalized Langevin equation approach for atom-solid-surface scattering: numerical techniques for gaussian generalized Langevin dynamics. J Chem Phys 65:3762–3766

    Article  CAS  Google Scholar 

  50. Adelman SA (1979) Generalized Langevin theory for many-body problems in chemical-dynamics: general formulation and the equivalent harmonic chain representation. J Chem Phys 71:4471–4486

    Article  CAS  Google Scholar 

  51. Essmann U, Perera L, Berkowitz ML, Darden T, Lee H et al (1995) A smooth particle mesh Ewald method. J Chem Phys 103:8577–8593

    Article  CAS  Google Scholar 

  52. Ryckaert JP, Ciccotti G, Berendsen HJC (1977) Numerical-interaction of cartesian equations of motion of a system with constraints: molecular-dynamics of N-alkanes. J Comput Phys 23:327–341

    Article  CAS  Google Scholar 

  53. Pearson K (1901) On lines and planes of closest fit to systems of points in space. Philos Mag 2(11):559–572

    Article  Google Scholar 

  54. Hotelling H (1933) Analysis of a complex of statistical variables into principal components. J Educ Psychol 24:417–441

    Article  Google Scholar 

  55. Hotelling H (1936) Relations between two sets of variates. Biometrika 28:321–377

    Article  Google Scholar 

  56. Still WC, Tempczyk A, Hawley RC, Hendrickson T (1990) Semianalytical treatment of solvation for molecular mechanics and dynamics. J Am Chem Soc 112:6127–6129

    Article  CAS  Google Scholar 

  57. Miller IIIBR, McGee TD Jr, Swails JM, Homeyer N, Gohlke H, Roitberg AE (2012) MMPBSA.py: an efficient program for end-state free energy calculations. J Chem Theory Comput 8(9):3314–3321

    Article  CAS  PubMed  Google Scholar 

  58. Frembgen-Kesner T, Elcock AH (2006) Computational sampling of a cryptic drug binding site in a protein receptor: explicit solvent molecular dynamics and inhibitor docking to p38 MAP kinase. J Mol Biol 359:202–214

    Article  CAS  PubMed  Google Scholar 

  59. Filomia F et al (2010) Insights into MAPK p38 alpha DFG flip mechanism by accelerated molecular dynamics. Bioorg Med Chem Lett 8:6805–6812

    Article  CAS  Google Scholar 

  60. Badrinarayan P, Sastry GN (2011) Sequence, structure, and active site analyses of p38 MAP kinase: exploiting DFG-out conformation as a strategy to design new type II leads. J Chem Inf Model 51:115–129

    Article  CAS  PubMed  Google Scholar 

  61. Jeffrey PD, Russo AA, Polyak K, Gibbs E, Hurwitz J, Massagué J, Pavletich NP (1995) Mechanism of CDK activation revealed by the structure of a cyclinA-CDK2 complex. Nature 376(6538):313–320

    Article  CAS  PubMed  Google Scholar 

  62. Fisher RP, David OM (1994) A novel cyclin associates with M015/CDK7 to form the CDK-activating kinase. Cell 78(4):713–724

    Article  CAS  PubMed  Google Scholar 

  63. Levy Y, Onuchic JN (2006) Water mediation in protein folding and molecular recognition. Annu Rev Biophys Biomol Struct 35:389–415

    Article  CAS  PubMed  Google Scholar 

  64. Papoian GA, Ulander J, Wolynes PG (2003) Role of water mediated interactions in protein–protein recognition landscapes. J Am Chem 125(30):9170–9178

    Article  CAS  Google Scholar 

  65. van Linden OP, Kooistra AJ, Leurs R, de Esch IJ, de Graaf C (2013) KLIFS: a knowledge-based structural database to navigate kinase–ligand interaction space. J Med Chem 57(2):249–277

    Article  CAS  PubMed  Google Scholar 

  66. Sun HY et al (2015) Revealing the favorable dissociation pathway of type II kinase inhibitors via enhanced sampling simulations and two-end-state calculations. Sci Rep 5:8457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Yang Y et al (2011) Molecular dynamics simulation and free energy calculation studies of the binding mechanism of allosteric inhibitors with p38 alpha MAP Kinase. J Chem Inf Model 51:3235–3246

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the US National Institutes of Health (GM-109045) and National Science Foundation national supercomputer centers (TG-CHE130009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chia-en A. Chang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 842 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cholko, T., Chen, W., Tang, Z. et al. A molecular dynamics investigation of CDK8/CycC and ligand binding: conformational flexibility and implication in drug discovery. J Comput Aided Mol Des 32, 671–685 (2018). https://doi.org/10.1007/s10822-018-0120-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-018-0120-3

Keywords