Skip to main content
Log in

Quantum chemical studies on anion specificity of CαNN motif in functional proteins

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Anion binding CαNN motif is found in functionally important regions of protein structures. This motif based only on backbone atoms from three adjacent residues, recognizes free sulphate or phosphate ion as well as phosphate groups in nucleotides and in a variety of cofactors. The mode of anion recognition and microscopic picture of binding interaction remains unclear. Here we perform self-consistent quantum chemical calculations considering sulphate and phosphate bound CαNN motif fragments from crystal structures of functional proteins in order to figure out microscopic basis of anion recognition. Our calculations indicate that stability and preference of the anion in the motif depends on the sequence of the motif. The stabilization energy is larger in case of polar residue containing motif fragment. Nitrogen atom of the polar residue of motif mainly participates in the coordination at the lowest energy levels. Anion replacement decreases stabilization energy along with coordination between motif atoms and oxygen atoms of anion shifted to higher energies, suggesting preference of the motif residues to specific anion. Our analysis may be helpful to understand microscopic basis of interaction between proteins and ionic species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gale PA, Perez-Tomas R, Quesada R (2013) Anion transporters and biological systems. Acc Chem Res 46(12):2801–2813

    Article  CAS  PubMed  Google Scholar 

  2. Gale PA, Busschaert N, Haynes CJ, Karagiannidis LE, Kirby IL (2014) Anion receptor chemistry: highlights from 2011 and 2012. Chem Soc Rev 43(1):205–241

    Article  CAS  PubMed  Google Scholar 

  3. Caballero A, Zapata F, Beer PD (2013) Interlocked host molecules for anion recognition and sensing. Coord Chem Rev 257(17–18):2434–2455

    Article  CAS  Google Scholar 

  4. Gale PA (2011) From anion receptors to transporters. Acc Chem Res 44(3):216–226

    Article  CAS  PubMed  Google Scholar 

  5. Duke RM, Veale EB, Pfeffer FM, Kruger PE, Gunnlaugsson T (2010) Colorimetric and fluorescent anion sensors: an overview of recent developments in the use of 1,8-naphthalimide-based chemosensors. Chem Soc Rev 39(10):3936–3953

    Article  CAS  PubMed  Google Scholar 

  6. Elmes RB, Jolliffe KA (2015) Anion recognition by cyclic peptides. Chem Comm 51(24):4951–4968

    Article  CAS  PubMed  Google Scholar 

  7. Kral V, Rusin O, Shishkanova T, Volf R, Matejka P, Volka K (1999) Anion binding: from supramolecules to sensors. Chem Listy 93(9):546–553

    CAS  Google Scholar 

  8. Denessiouk KA, Johnson MS, Denesyuk AI (2005) Novel CαNN structural motif for protein recognition of phosphate ions. J Mol Biol 345(3):611–629

    Article  CAS  PubMed  Google Scholar 

  9. Chakrabarti P (1993) Anion binding sites in protein structures. J Mol Biol 234(2):463–482

    Article  CAS  PubMed  Google Scholar 

  10. Watson JD, Milner-White EJ (2002) A novel main-chain anion-binding site in proteins: the nest. A particular combination of phi, psi values in successive residues gives rise to anion-binding sites that occur commonly and are found often at functionally important regions. J Mol Biol 315(2):171–182

    Article  CAS  PubMed  Google Scholar 

  11. Milner-White EJ, Nissink JW, Allen FH, Duddy WJ (2004) Recurring main-chain anion-binding motifs in short polypeptides: nests. Acta Crystallogr 60:1935–1942

    Google Scholar 

  12. Wintjens R, Rooman M (1996) Structural classification of HTH DNA-binding domains and protein-DNA interaction modes. J Mol Biol 262(2):294–313

    Article  CAS  PubMed  Google Scholar 

  13. Sheet T, Supakar S, Banerjee R (2013) Conformational preference of ‘CαNN’ short peptide motif towards recognition of anions. PLoS ONE 8(3):e57366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sheet T, Banerjee R (2016) The ‘CαNN’ motif: an intrinsic lover of sulfate and phosphate ions. RSC Adv 6(59):54129–54141

    Article  CAS  Google Scholar 

  15. Sheet T, Ghosh S, Pal D, Banerjee R (2017) Computational design of model scaffold for anion recognition based on the ‘CαNN’ motif. Biopolymers 108(1):e22921

    Article  CAS  Google Scholar 

  16. Sheet T, Banerjee R (2010) Sulfate ion interaction with ‘anion recognition’ short peptide motif at the N-terminus of an isolated helix: a conformational landscape. J Struct Biol 171(3):345–352

    Article  CAS  PubMed  Google Scholar 

  17. Patra P, Ghosh M, Banerjee R, Chakrabarti J (2017) Anion induced conformational preference of CαNN motif residues in functional proteins. Proteins 85(12):2179–2190

    Article  CAS  PubMed  Google Scholar 

  18. Kagawa H, Mori K (1999) Molecular orbital study of the interaction between MgATP and the myosin motor domain: the highest occupied molecular orbitals indicate the reaction site of ATP hydrolysis. J Phys Chem B 103(34):7346–7352

    Article  CAS  Google Scholar 

  19. Blomberg MRA, Siegbahn PEM (2001) A quantum chemical approach to the study of reaction mechanisms of redox-active metalloenzymes. J Phys Chem 105(39):9375–9386

    Article  CAS  Google Scholar 

  20. Sikdar S, Ghosh M, De Raychaudhury M, Chakrabarti J (2015) Quantum chemical studies on stability and chemical activities in calcium ion bound calmodulin loops. J Phys Chem B 119(46):14652–14659

    Article  CAS  PubMed  Google Scholar 

  21. Sikdar S, Ghosh M, De Raychaudhury M, Chakrabarti J (2014) Quantum chemical studies on the role of residues in calcium ion binding to calmodulin. Chem Phys Lett 605:103–107

    Article  CAS  Google Scholar 

  22. Fukui K (1982) Role of frontier orbitals in chemical reactions. Science 218(4574):747–754

    Article  CAS  PubMed  Google Scholar 

  23. Yao M, Ose T, Sugimoto H, Horiuchi A, Nakagawa A, Wakatsuki S, Yokoi D, Murakami T, Honma M, Tanaka I (2000) Crystal structure of 1-aminocyclopropane-1-carboxylate deaminase from Hansenula saturnus. J Biol Chem 275(44):34557–34565

    Article  CAS  PubMed  Google Scholar 

  24. Dormitzer PR, Sun ZY, Wagner G, Harrison SC (2002) The rhesus rotavirus VP4 sialic acid binding domain has a galectin fold with a novel carbohydrate binding site. EMBO J 21(5):885–897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Symmons MF, Jones GH, Luisi BF (2000) A duplicated fold is the structural basis for polynucleotide phosphorylase catalytic activity, processivity, and regulation. Structure 8(11):1215–1226

    Article  CAS  PubMed  Google Scholar 

  26. Atwell S, Ultsch M, De Vos AM, Wells JA (1997) Structural plasticity in a remodeled protein-protein interface. Science 278(5340):1125–1128

    Article  CAS  PubMed  Google Scholar 

  27. Pieper U, Kapadia G, Mevarech M, Herzberg O (1998) Structural features of halophilicity derived from the crystal structure of dihydrofolate reductase from the Dead Sea halophilic archaeon, Haloferax volcanii. Structure 6(1):75–88

    Article  CAS  PubMed  Google Scholar 

  28. Lepsik M, Field MJ (2007) Binding of calcium and other metal ions to the EF-hand loops of calmodulin studied by quantum chemical calculations and molecular dynamics simulations. J Phys Chem B 111(33):10012–10022

    Article  CAS  PubMed  Google Scholar 

  29. Wu EL, Mei Y, Han K, Zhang JZ (2007) Quantum and molecular dynamics study for binding of macrocyclic inhibitors to human alpha-thrombin. Biophys J 92(12):4244–4253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. He X, Zhang JZ (2006) The generalized molecular fractionation with conjugate caps/molecular mechanics method for direct calculation of protein energy. J Chem Phys 124(18):184703

    Article  CAS  PubMed  Google Scholar 

  31. Zhang DW, Chen XH, Zhang JZ (2003) Molecular caps for full quantum mechanical computation of peptide-water interaction energy. J Comput Chem 24(15):1846–1852

    Article  CAS  PubMed  Google Scholar 

  32. Brooks BR, Brooks CL III, Mackerell AD Jr, Nilsson L, Petrella RJ, Roux B, Won Y, Archontis G, Bartels C, Boresch S, Caflisch A, Caves L, Cui Q, Dinner AR, Feig M, Fischer S, Gao J, Hodoscek M, Im W, Kuczera K, Lazaridis T, Ma J, Ovchinnikov V, Paci E, Pastor RW, Post CB, Pu JZ, Schaefer M, Tidor B, Venable RM, Woodcock HL, Wu X, Yang W, York DM, Karplus M (2009) CHARMM: the biomolecular simulation program. J Comput Chem 30(10):1545–1614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Blochl PE (1994) Projector augmented-wave method. Phys Rev B 50(24):17953–17979

    Article  CAS  Google Scholar 

  34. Kresse G, Hafner J (1993) Ab-initio molecular-dynamics for open-shell transition-metals. Phys Rev B 48(17):13115–13118

    Article  CAS  Google Scholar 

  35. Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59(3):1758–1775

    Article  CAS  Google Scholar 

  36. Car R, Parrinello M (1985) Unified approach for molecular dynamics and density-functional theory. Phys Rev Lett 55(22):2471–2474

    Article  CAS  PubMed  Google Scholar 

  37. Henkelman G, LaBute MX, Tung CS, Fenimore PW, McMahon BH (2005) Conformational dependence of a protein kinase phosphate transfer reaction. Proc Natl Acad Sci USA 102(43):15347–15351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Adhikari P, Wen AM, French RH, Parsegian VA, Steinmetz NF, Podgornik R, Ching WY (2014) Electronic structure, dielectric response, and surface charge distribution of RGD (1FUV) peptide. Sci Rep 4:5605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Silvestrelli PL, Parrinello M (1999) Structural, electronic, and bonding properties of liquid water from first principles. J Chem Phys 111(8):3572–3580

    Article  CAS  Google Scholar 

  40. Kresse G, Hafner J (1993) Abinitio molecular-dynamics for liquid-metals. Phys Rev B 47(1):558–561

    Article  CAS  Google Scholar 

  41. Kresse G, Furthmuller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54(16):11169–11186

    Article  CAS  Google Scholar 

  42. The PyMOL Molecular Graphics System. Version 2.0 edn. Schrodinger, LLC

  43. Gaussian 03, Revision C, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian, Inc., Wallingford CT

  44. Trado-Rives J, Jorgensen WL (2008) Performance of B3LYP density functional methods for a large set of organic molecules. J Chem Theory Comput 4(2):297–306

    Article  CAS  Google Scholar 

  45. Siegbahn PE, Borowski T (2006) Modeling enzymatic reactions involving transition metals. Acc Chem Res 39:729–738

    Article  CAS  PubMed  Google Scholar 

  46. Blomberg MR, Siegbahn PE (2006) Quantum chemistry applied to the mechanisms of transition metal containing enzymes-cytochrome c oxidase, a particularly challenging case. J Comput Chem 27:1373–1384

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

PP thanks to Dr. Manas Mondal for helping in VASP calculation. RB and PP thank the TEQIP-III, MAKAUT, WB and DBT-BIF for funding. PP is also thankful to SNBNCBS, Kolkata for giving the computational facility. JC thanks DST for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Piya Patra or Jaydeb Chakrabarti.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 2479 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patra, P., Ghosh, M., Banerjee, R. et al. Quantum chemical studies on anion specificity of CαNN motif in functional proteins. J Comput Aided Mol Des 32, 929–936 (2018). https://doi.org/10.1007/s10822-018-0157-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-018-0157-3

Keywords

Navigation