Skip to main content

Advertisement

Log in

Anti-malarial, cytotoxicity and molecular docking studies of quinolinyl chalcones as potential anti-malarial agent

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

The quinolinyl chalcones series (A1–A14) were screened for antimalarial activity. According to in vitro antimalarial studies, many quinolinyl chalcones are potentially active against CQ-sensitive and resistance P. falciparum strains with no toxicity against Vero cell lines. The most active quinolinyl chalcones A4 (with IC50 0.031 μM) made a stable A4–heme complex with − 25 kcal/mole binding energy and also showed strong π–π interaction at 3.5 Å. Thus, the stable A4–heme complex formation suggested that these quinolinyl chalcones act as a blocker for heme polymerization. The docking results of quinolinyl chalcones with Pf-DHFR showed that the halogenated benzene part of quinolinyl chalcones made strong interaction with Pf-DHFR as compared to quinoline part. A strong A4–Pf-DHFR complex was formed with low binding energy (− 11.04 kcal/mole). The ADMET properties of quinolinyl chalcones were also studied. The in vivo antimalarial studies also confirmed the A4 as an active antimalarial agent.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Chart 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Breman JG, Egan A, Keusch GT (2001) Am J Trop Med Hyg 64:1–11

    Article  CAS  PubMed  Google Scholar 

  2. Mendis K, Sina B, Marchesini P, Carter R (2001) Am J Trop Med Hyg 64:97–106

    Article  CAS  PubMed  Google Scholar 

  3. Gessler MC, Nkunya MHH, Mwasumbi LB, Heinrich M, Tanner M (1994) Acta Trop 56(1):65–77

    Article  CAS  PubMed  Google Scholar 

  4. Tran QL, Tezuka Y, Ueda J-Y, Nguyen NT, Maruyama Y, Begum K, Kim H-S, Wataya Y, Tran QK, Kadota S (2003) Ethnopharmacol 86(2):249–252

    Article  Google Scholar 

  5. Domínguez JN, León C, Rodrigues J, de Gamboa Domínguez N, Gut J, Rosenthal PJ (2005) J Med Chem 48(10):3654–3658

    Article  CAS  PubMed  Google Scholar 

  6. Aponte JJ, Aide P, Renom M, Mandomando I, Bassat Q, Sacarlal J, Manaca MN, Lafuente S, Barbosa A, Leach A, Lievens M, Vekemans J, Sigauque B, Dubois M-C, Demoitié M-A, Sillman M, Savarese B, McNeil JG, Macete E, Ballou WR, Cohen J, Alonso PL (2007) Lancet 370(9598):1543–1551

    Article  CAS  PubMed  Google Scholar 

  7. Vekemans J, Marsh K, Greenwood B, Leach A, Kabore W, Soulanoudjingar S, Asante KP, Ansong D, Evans J, Sacarlal J, Bejon P, Kamthunzi P, Salim N, Njuguna P, Hamel MJ, Otieno W, Gesase S, Schellenberg D (2011) Malaria J 10(1):221

    Article  Google Scholar 

  8. White NJ (2004) J Clin Invest 113(8):1084–1092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Domı́nguez JN, Charris JE, Lobo G, de Gamboa Domı́nguez N, Moreno MAM, Riggione F, Sanchez E, Olson J, Rosenthal PJ (2001) Euro J Med Chem 36(6):555–560

    Article  Google Scholar 

  10. Bohle DS, Conklin BJ, Cox D, Madsen SK, Paulson S, Stephens PW, Yee GT (1994) Am Chem Soc Symp Ser 572:497–515

    CAS  Google Scholar 

  11. Slater A, Cerami A (1992) Nature 355(6356):167

    Article  CAS  PubMed  Google Scholar 

  12. Sullivan DJ, Gluzman IY, Russell DG, Goldberg DE (1996) Proc Natl Acad Sci USA 93(21):11865–11870

    Article  CAS  PubMed  Google Scholar 

  13. Tilley L, Loria P, Foley M (2001) Chloroquine and other quinoline antimalarials. Antimalarial chemother. Springer, Berlin, pp 87–121

    Google Scholar 

  14. Hameed A, Abdullah MI, Ahmed E, Sharif A, Irfan A, Masood S (2016) Bioorg Chem 65:175–182

    Article  CAS  PubMed  Google Scholar 

  15. Abdullah MI, Mahmood A, Madni M, Masood S, Kashif M (2014) Bioorg Chem 54:31–37

    Article  CAS  PubMed  Google Scholar 

  16. Meth-Cohn O, Narine B, Tarnowski B (1981) J Chem Soc Perkin Trans 1:1520–1530

    Article  Google Scholar 

  17. Herencia F, Ferrándiz ML, Ubeda A, Domínguez J, Charris JE, Lobo GM, Alcaraz MJ (1998) Bioorg Med Chem Lett 8(10):1169–1174

    Article  CAS  PubMed  Google Scholar 

  18. Li R, Kenyon GL, Cohen FE, Chen X, Gong B, Dominguez JN, Davidson E, Kurzban G, Miller RE, Nuzum EO, Rosenthal PJ, McKerrow JH (1995) J Med Chem 38(26):5031–5037

    Article  CAS  PubMed  Google Scholar 

  19. Becke AD (1988) Phys Rev A 38(6):3098–3100

    Article  CAS  Google Scholar 

  20. Lee C, Yang W, Parr RG (1988) Phys Rev B 37(2):785–789

    Article  CAS  Google Scholar 

  21. Koenig D (1965) Acta Crystallogr 18(4):663–673

    Article  CAS  PubMed  Google Scholar 

  22. Schäfer A, Huber C, Ahlrichs R (1994) J Chem Phys 100(8):5829–5835

    Article  Google Scholar 

  23. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery Jr. JA, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ. Gaussian 16 Rev. B.01. Wallingford, CT; 2016

  24. Bali A (2011) ISRN Pharm 2011:5

    Google Scholar 

  25. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (1997) Adv Drug Deliv Rev 23(1):3–25

    Article  CAS  Google Scholar 

  26. Ertl P, Rohde B, Selzer P (2000) J Med Chem 43(20):3714–3717

    Article  CAS  PubMed  Google Scholar 

  27. Nikolova N, Jaworska J (2003) QSAR Comb Sci 22(9–10):1006–1026

    Article  CAS  Google Scholar 

  28. Glen RC, Adams SE (2006) QSAR Comb Sci 25(12):1133–1142

    Article  CAS  Google Scholar 

  29. Bender A, Glen RC (2004) Org Biomol Chem 2(22):3204–3218

    Article  CAS  PubMed  Google Scholar 

  30. Patterson DE, Cramer RD, Ferguson AM, Clark RD, Weinberger LE (1996) J Med Chem 39(16):3049–3059

    Article  CAS  PubMed  Google Scholar 

  31. Willett P, Barnard JM, Downs GM (1998) J Chem Inf Comput Sci 38(6):983–996

    Article  CAS  Google Scholar 

  32. Xue CX, Cui SY, Liu MC, Hu ZD, Fan BT (2004) Eur J Med Chem 39(9):745–753

    Article  CAS  PubMed  Google Scholar 

  33. Gacche R, Khsirsagar M, Kamble S, Bandgar B, Dhole N, Shisode K, Chaudhari A (2008) Chem Pharm Bull 56(7):897–901

    Article  CAS  PubMed  Google Scholar 

  34. Kumar S, Guha M, Choubey V, Maity P, Bandyopadhyay U (2007) Life Sci 80(9):813–828

    Article  CAS  PubMed  Google Scholar 

  35. Weissbuch I, Leiserowitz L (2008) Chem Rev 108(11):4899–4914

    Article  CAS  PubMed  Google Scholar 

  36. Babu LT, Larry AW (2005) Comb Chem High Throughput Screen 8(1):63–79

    Article  Google Scholar 

  37. Cohen SN, Phifer KO, Yielding KL (1964) Nature 202:805

    Article  CAS  PubMed  Google Scholar 

  38. Dorn A, Vippagunta SR, Matile H, Jaquet C, Vennerstrom JL, Ridley RG (1998) Biochem Pharmacol 55(6):727–736

    Article  CAS  PubMed  Google Scholar 

  39. Warhurst DC, Craig JC, Adagu IS, Guy RK, Madrid PB, Fivelman QL (2007) Biochem Pharmacol 73(12):1910–1926

    Article  CAS  PubMed  Google Scholar 

  40. Sommadossi JP, Carlisle R, Schinazi RF, Zhou Z (1988) Antimicrob Agents Chemother 32(7):997–1001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Schinazi RF, Peters J, Williams CC, Chance D, Nahmias AJ (1982) Antimicrob Agents Chemother 22(3):499–507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chou J, Chou T-C (1985) Dose-effect analysis with microcomputers: quantitation of ED50, LD50, synergism, antagonism, low-dose risk, receptor binding and enzyme kinetics, A Computer Software for Apple II Series and IBMPC and Instruction Manual. Elsevier-Biosoft, Elsevier Science Publishers, Cambridge

    Google Scholar 

  43. Jain M, Khan SI, Tekwani BL, Jacob MR, Singh S, Singh PP, Jain R (2005) Bioorg Med Chem Lett 13(14):4458–4466

    Article  CAS  Google Scholar 

  44. Makler M, Ries J, Williams J, Bancroft J, Piper R, Gibbins B, Hinrichs D (1993) Am J Trop Med Hyg 48(6):739–741

    Article  CAS  PubMed  Google Scholar 

  45. Makler MT, Hinrichs DJ (1993) Am J Trop Med Hyg 48(2):205–210

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ejaz Ahmed or Muhammad Imran Abdullah.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hameed, A., Masood, S., Hameed, A. et al. Anti-malarial, cytotoxicity and molecular docking studies of quinolinyl chalcones as potential anti-malarial agent. J Comput Aided Mol Des 33, 677–688 (2019). https://doi.org/10.1007/s10822-019-00210-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-019-00210-2

Keywords

Navigation