Skip to main content

Advertisement

Log in

ART–RRT: As-Rigid-As-Possible search for protein conformational transition paths

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

The possible functions of a protein are strongly related to its structural rearrangements in the presence of other molecules or environmental changes. Hence, the evaluation of transition paths of proteins, which encodes conformational changes between stable states, is important since it may reveal the underlying mechanisms of the biochemical processes related to these motions. During the last few decades, different geometry-based methods have been proposed to predict such transition paths. However, in the cases where the solution requires complex motions, these methods, which typically constrain only locally the molecular structures, could produce physically irrelevant solutions involving self-intersection. Recently, we have proposed ART–RRT, an efficient method for finding ligand-unbinding pathways. It relies on the exploration of energy valleys in low-dimensional spaces, taking advantage of some mechanisms inspired from computer graphics to ensure the consistency of molecular structures. This article extends ART–RRT to the problem of finding probable conformational transition between two stable states for proteins. It relies on a bidirectional exploration rooted on the two end states and introduces an original strategy to attempt connections between the explored regions. The resulting method is able to produce at low computational cost biologically realistic paths free from self-intersection. These paths can serve as valuable input to other advanced methods for the study of proteins.

Graphic Abstract 

A better understanding of conformational changes of proteins is important since it may reveal the underlying mechanisms of the biochemical processes related to such motions. Recently, the ART–RRT method has been introduced for finding ligand-unbinding pathways. This article presents an adaptation of the method for finding probable conformational transition between two stable states of a protein. The method is not only computationally cost-effective but also able to produce biologically realistic paths which are free from self-intersection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Notes

  1. This one-ring neighbor topology, also called spoke [77], is the only one used in ART–RRT so far.

  2. So far, we set these weights to 1.

References

  1. Shoemaker BA, Panchenko AR (2007) PLoS Comput Biol 3:1. https://doi.org/10.1371/journal.pcbi.0030042

    Article  CAS  Google Scholar 

  2. Pelikan M, Hura GL, Hammel M (2009) Gen Physiol Biophys 28:174

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Renault M, Tommassen-van Boxtel R, Bos MP, Post JA, Tommassen J, Baldus M (2012) Proc Natl Acad Sci 109:4863

    CAS  PubMed  Google Scholar 

  4. Moraes I, Evans G, Sanchez-Weatherby J, Newstead S, Stewart PDS (2014) Biochem Biophys Acta 1838:78

    CAS  PubMed  Google Scholar 

  5. Berezhkovskii AM, Makarov DE (2018) J Chem Phys 148:201102. https://doi.org/10.1063/1.5030427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Alder BJ, Wainwright T (1959) J Chem Phys 31:459

    CAS  Google Scholar 

  7. Adcock SA, McCammon JA (2006) Chem Rev 106:1589

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Day R, Daggett V (2003) Adv Protein Chem 66:373

    CAS  PubMed  Google Scholar 

  9. Scheraga HA, Khalili M, Liwo A (2007) Annu Rev Phys Chem 58:57. https://doi.org/10.1146/annurev.physchem.58.032806.104614

    Article  CAS  PubMed  Google Scholar 

  10. Ciccotti G, Ferrario M, Schuette C (2014) Molecular dynamics simulation. Entropy. 16(233):1

    Google Scholar 

  11. Metropolis N, Ulam S (1949) J Am Stat Assoc 44:335

    CAS  PubMed  Google Scholar 

  12. Shakhnovich E, Farztdinov G, Gutin A, Karplus M (1991) Phys Rev Lett 67:1665

    CAS  PubMed  Google Scholar 

  13. Hansmann UH, Okamoto Y (1999) Curr Opin Struct Biol 9:177

    CAS  PubMed  Google Scholar 

  14. Kolinski A, Skolnick J (1994) Proteins 18:338

    CAS  PubMed  Google Scholar 

  15. Lomakin A, Asherie N, Benedek GB (1996) J Chem Phys 104:1646

    CAS  Google Scholar 

  16. Elber R (2005) Curr Opin Struct Biol 15:151

    CAS  PubMed  Google Scholar 

  17. Laio A, Gervasio FL (2008) Rep Prog Phys 71:126601

    Google Scholar 

  18. Dellago C, Bolhuis P, Geissler PL (2002) Adv Chem Phys 123:1–78

    CAS  Google Scholar 

  19. Sørensen MR, Voter AF (2000) J Chem Phys 112:9599

    Google Scholar 

  20. Montalenti F, Sørensen M, Voter A (2001) Phys Rev Lett 87:126101

    CAS  PubMed  Google Scholar 

  21. Sugita Y, Okamoto Y (1999) Chem Phys Lett 314:141

    CAS  Google Scholar 

  22. Swendsen RH, Wang J-S (1986) Phys Rev Lett 57:2607

    CAS  PubMed  Google Scholar 

  23. Earl DJ, Deem MW (2005) Phys Chem Chem Phys 7:3910

    CAS  PubMed  Google Scholar 

  24. Kirkpatrick S, Gelatt CD, Vecchi MP et al (1983) Science 220:671

    CAS  PubMed  Google Scholar 

  25. Brooks SP, Morgan BJ (1995) J R Stat Soc D 44:241

    Google Scholar 

  26. Barducci A, Bonomi M, Parrinello M (2011) Wiley Interdiscip Rev 1:826

    CAS  Google Scholar 

  27. Torrie GM, Valleau JP (1977) J Comput Phys 23:187

    Google Scholar 

  28. Voter AF (1997) Phys Rev Lett 78:3908

    CAS  Google Scholar 

  29. Becker KE, Fichthorn KA (2006) J Chem Phys 125:184706

    PubMed  Google Scholar 

  30. Fichthorn KA, Mubin S (2015) Comput Mater Sci 100:104

    Google Scholar 

  31. Huber T, Torda AE, van Gunsteren WF (1994) J Comput Aided Mol Des 8:695

    CAS  PubMed  Google Scholar 

  32. Wales DJ, Scheraga HA (1999) Science 285:1368

    CAS  PubMed  Google Scholar 

  33. Shanker S, Bandyopadhyay P (2011) J Phys Chem A 115:11866

    CAS  PubMed  Google Scholar 

  34. Grubmüller H (1995) Phys Rev E 52:2893

    Google Scholar 

  35. Schlitter J, Engels M, Krüger P, Jacoby E, Wollmer A (1993) Mol Simul 10:291

    CAS  Google Scholar 

  36. Izrailev S, Stepaniants S, Isralewitz B, Kosztin D, Lu H, Molnar F, Wriggers W, Schulten K (1999) Computational molecular dynamics: challenges, methods, ideas. Springer, Berlin, pp 39–65

    Google Scholar 

  37. Lüdemann SK, Lounnas V, Wade RC (2000) J Mol Biol 303:797

    PubMed  Google Scholar 

  38. Kleywegt GJ, Jones TA (1995) Structure 3:535

    CAS  PubMed  Google Scholar 

  39. Kleywegt GJ, Jones TA (1996) Structure 4:1395

    CAS  PubMed  Google Scholar 

  40. Booth AG (2001) J Mol Graph Model 19:481

    CAS  PubMed  Google Scholar 

  41. Halgren TA, Lipscomb WN (1977) Chem Phys Lett 49:225

    CAS  Google Scholar 

  42. Veevers R, Hayward S (2018) J Mol Graph Model 82:108

    CAS  PubMed  Google Scholar 

  43. Castellana NE, Lushnikov A, Rotkiewicz P, Sefcovic N, Pevzner PA, Godzik A, Vyatkina K (2013) Algorithms Mol Biol 8:1. https://doi.org/10.1186/1748-7188-8-19

    Article  CAS  Google Scholar 

  44. Weiss DR, Levitt M (2009) J Mol Biol 385:665

    CAS  PubMed  Google Scholar 

  45. Echols N, Milburn D, Gerstein M (2003) Nucleic Acids Res 31:478

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Krebs WG, Gerstein M (2000) Nucleic Acids Res 28:1665. https://doi.org/10.1093/nar/28.8.1665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Farrell DW, Speranskiy K, Thorpe M (2010) Proteins 78:2908

    CAS  PubMed  Google Scholar 

  48. Wells S, Menor S, Hespenheide B, Thorpe M (2005) Phys Biol 2:S127

    CAS  PubMed  Google Scholar 

  49. Nguyen MK, Jaillet L, Redon S (2017) J Comput Aided Mol Des 31:403. https://doi.org/10.1007/s10822-017-0012-y

    Article  CAS  PubMed  Google Scholar 

  50. Al-Bluwi I, Siméon T, Cortés J (2012) Comput Sc Rev 6:125

    Google Scholar 

  51. Nguyen MK, Jaillet L, Redon S (2018) J Comput Aided Mol Des 32:853

    CAS  PubMed  Google Scholar 

  52. Jónsson H, Mills G, Jacobsen KW (1998) Nudged elastic band method for finding minimum energy paths of transitions (Chap. 16). World Scientific, Singapore, pp 385–404

    Google Scholar 

  53. Kavraki LE, Svestka P, Latombe J-C, Overmars MH (1996) IEEE Trans Robot Automat 12:566

    Google Scholar 

  54. Kavraki LE, Kolountzakis MN, Latombe J-C (1998) IEEE Trans Robot Automat 14:166

    Google Scholar 

  55. LaValle SM (1998) TR 98-11, Computer Science Department, Iowa State University. http://msl.cs.illinois.edu/lavalle/papers/Lav98c.pdf

  56. Kuffner JJ, LaValle SM (2000) Proceedings 2000 ICRA. Millennium conference. IEEE international conference on robotics and automation. Symposia proceedings (Cat. No.00CH37065), vol 2, pp 995–1001

  57. Lavalle SM, Kuffner JJ (2000) Algorithmic and computational robotics: new directions. CRC Press, Boca Raton, pp 293–308

    Google Scholar 

  58. Amato NM, Dill KA, Song G (2003) J Comput Biol 10:239

    CAS  PubMed  Google Scholar 

  59. Thomas S, Tang X, Tapia L, Amato NM (2007) J Comput Biol 14:839

    CAS  PubMed  Google Scholar 

  60. Apaydin MS, Brutlag DL, Guestrin C, Hsu D, Latombe J-C, Varma C (2003) J Comput Biol 10:257

    CAS  PubMed  Google Scholar 

  61. Chiang T-H, Apaydin MS, Brutlag DL, Hsu D, Latombe J-C (2006) Predicting experimental quantities in protein folding kinetics using stochastic roadmap simulation. Springer, Berlin, pp 410–424. https://doi.org/10.1007/11732990

    Book  Google Scholar 

  62. Jaillet L, Cortés J, Siméon T (2010) IEEE Trans Robot 26:635

    Google Scholar 

  63. Jaillet L, Corcho FJ, Pérez J-J, Cortés J (2011) J Comput Chem 32:3464

    CAS  PubMed  Google Scholar 

  64. Devaurs D, Vaisset M, Siméon T, Cortés J (2013) Workshop on artificial intelligence and robotics methods in computational biology, AAAI’13, Bellevue, United States, pp 8–13. https://hal.archives-ouvertes.fr/hal-00872247

  65. Devaurs D, Shehu A, Siméon T, Cortés J (2014) 2014 IEEE international conference on bioinformatics and biomedicine (BIBM), pp 37–44

  66. Devaurs D, Molloy K, Vaisset M, Shehu A, Siméon T, Cortés J (2015) IEEE Trans Nanobiosci 14:545

    Google Scholar 

  67. Porta JM, Jaillet L (2013) J Comput Chem 34:234

    CAS  PubMed  Google Scholar 

  68. Barbe S, Cortés J, Siméon T, Monsan P, Remaud-Siméon M, André I (2011) Proteins 79:2517

    CAS  PubMed  Google Scholar 

  69. Raveh B, Enosh A, Schueler-Furman O, Halperin D (2009) PLoS Comput Biol 5:1. https://doi.org/10.1371/journal.pcbi.1000295

    Article  CAS  Google Scholar 

  70. Kirillova S, Cortés J, Stefaniu A, Siméon T (2008) Proteins 70:131

    CAS  PubMed  Google Scholar 

  71. Al-Bluwi I, Vaisset M, Siméon T, Cortés J (2013) BMC Struct Biol 13:S2

    PubMed  PubMed Central  Google Scholar 

  72. Cortés J, Siméon T, Remaud-Siméon M, Tran V (2004) J Comput Chem 25:956

    PubMed  Google Scholar 

  73. Cortés J, Jaillet L, Siméon T (2008) IEEE Trans Robot 24:475

    Google Scholar 

  74. Cortés J, Le DT, Iehl R, Siméon T (2010) Phys Chem Chem Phys 12:8268

    PubMed  Google Scholar 

  75. Nguyen MK, Jaillet L, Redon S (2018) J Comput Chem. https://doi.org/10.1002/jcc.25132

    Article  PubMed  Google Scholar 

  76. Alexa M, Cohen-Or D, Levin D (2000) Proceedings of the 27th annual conference on computer graphics and interactive techniques. ACM Press, New York, pp 157–164

    Google Scholar 

  77. Levi Z, Gotsman C (2015) IEEE Trans Visual Comput Graphics 21:264

    Google Scholar 

  78. Sorkine O, AlexaM (2007) In: Proceedings of the fifth eurographics symposium on geometry processing, Eurographics Association, Aire-la-Ville, Switzerland, SGP’07, pp 109–116. ISBN 978-3-905673-46-3. http://dl.acm.org/citation.cfm?id=1281991.1282006

  79. Liu P, Agrafiotis DK, Theobald DL (2010) J Comput Chem 31:1561

    CAS  PubMed  Google Scholar 

  80. Shoemake K (1985) ACM SIGGRAPH computer graphics, vol 19. ACM, New York, pp 245–254

    Google Scholar 

  81. Devaurs D, Bouard L, Vaisset M, Zanon C, Al-Bluwi I, Iehl R, Siméon T, Cortés J (2013) Nucleic Acids Res 41:W297

    PubMed  PubMed Central  Google Scholar 

  82. Bitzek E, Koskinen P, Gähler F, Moseler M, Gumbsch P (2006) Phys Rev Lett 97:170201

    PubMed  Google Scholar 

  83. Devaurs D, Siméon T, Cortés J (2014) 2014 IEEE/RSJ international conference on intelligent robots and systems (IROS 2014), pp 2991–2996

  84. Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953) J Chem Phys 21:1087

    CAS  Google Scholar 

  85. INRIA (2017) SAMSON: software for adaptive modeling and simulation of nanosystems. Version 0.6.0. https://www.samson-connect.net

  86. Lemkul JA (2017) GROMACS tutorials

  87. van Gunsteren W (1996) Biomolecular simulation: the GROMOS96 manual and user guide. Biomos, Zürich. ISBN 9783728124227. https://books.google.fr/books?id=0TbJAAAACAAJ.

  88. Amemiya T, Koike R, Kidera A, Ota M (2012) Nucleic Acids Res 40:D554

    CAS  PubMed  Google Scholar 

  89. Müller C, Schlauderer G, Reinstein J, Schulz GE (1996) Structure 4:147

    PubMed  Google Scholar 

  90. Haspel N, Moll M, Baker ML, Chiu W, Kavraki LE (2010) BMC Struct Biol 10:S1

    PubMed  PubMed Central  Google Scholar 

  91. Schrödinger (2015) LLC

  92. Feng Y, Yang L, Kloczkowski A, Jernigan RL (2009) Proteins 77:551

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Pauwels R, De Clercq E (1996) J Acquir Immune Defic Syndr 11:211

    CAS  Google Scholar 

  94. Gipson B, Moll M, Kavraki LE (2013) PLoS ONE 8:1. https://doi.org/10.1371/journal.pone.0068826

    Article  CAS  Google Scholar 

  95. Bucher D, Grant BJ, Markwick PR, McCammon JA (2011) PLoS Comput Biol 7:1. https://doi.org/10.1371/journal.pcbi.1002034

    Article  CAS  Google Scholar 

  96. Shatsky M, Nussinov R, Wolfson HJ (2002) Proteins 48:242

    CAS  PubMed  Google Scholar 

  97. Emekli U, Schneidman-Duhovny D, Wolfson HJ, Nussinov R, Haliloglu T (2008) Proteins 70:1219

    CAS  PubMed  Google Scholar 

  98. Keating KS, Flores SC, Gerstein MB, Kuhn LA (2009) Protein Sci 18:359

    CAS  PubMed  Google Scholar 

  99. Shibuya T (2010) IEEE/ACM Trans Comput Biol Bioinform 7:333

    CAS  PubMed  Google Scholar 

  100. Dziubiński M, Daniluk P, Lesyng B (2015) Bioinformatics 32:25

    PubMed  Google Scholar 

  101. Fotoohifiroozabadi S, Mohamad MS, Deris S (2017) IEEE/ACM Trans Comput Biol Bioinform 15(3):934–943

    PubMed  Google Scholar 

  102. Kumar S, Rosenberg JM, Bouzida D, Swendsen RH, Kollman PA (1992) J Comput Chem 13:1011. https://doi.org/10.1002/jcc.540130812

    Article  CAS  Google Scholar 

  103. Dellago C (2007) In: Chipot C, Pohorille A (eds) Free energy calculations: theory and applications in chemistry and biology, 1st edn. Springer, Berlin, pp 249–276

    Google Scholar 

  104. Dellago C, Bolhuis PG, Csajka FS, Chandler D (1998) J Chem Phys 108:1964

    CAS  Google Scholar 

  105. Canutescu AA, Dunbrack RL (2003) Protein Sci 12:963

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Mandell DJ, Coutsias EA, Kortemme T (2009) Nat Methods 6:551

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Lee J, Lee D, Park H, Coutsias EA, Seok C (2010) Proteins 78:3428

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Tang K, Zhang J, Liang J (2014) PLoS Comput Biol 10:1. https://doi.org/10.1371/journal.pcbi.1003539

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to gratefully acknowledge funding from the European Research Council through the ERC Starting Grant No. 307629.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minh Khoa Nguyen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, M.K., Jaillet, L. & Redon, S. ART–RRT: As-Rigid-As-Possible search for protein conformational transition paths. J Comput Aided Mol Des 33, 705–727 (2019). https://doi.org/10.1007/s10822-019-00216-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-019-00216-w

Keywords

Navigation