Skip to main content

Advertisement

Log in

Performing solvation free energy calculations in LAMMPS using the decoupling approach

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

The decoupling approach to solvation free energy calculations requires scaling the interactions between the solute and the solution with all intramolecular interactions preserved. This paper reports a new procedure that makes it possible to these calculations in LAMMPS. The procedure is tested against built-in GROMACS capabilities. The model compounds chosen to test our methodology are ethanol and biphenyl. The LAMMPS and GROMACS results obtained are in good agreement with each other. This work should help perform solvation free energy calculations in LAMMPS and/or other molecular dynamics software having no built-in functions to implement the decoupling approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Sanz E, Vega C (2007) J Chem Phys 126(1):014507

    CAS  PubMed  Google Scholar 

  2. Aragones J, Sanz E, Vega C (2012) J Chem Phys 136(24):244508

    CAS  PubMed  Google Scholar 

  3. Benavides A, Aragones J, Vega C (2016) J Chem Phys 144(12):124504

    CAS  PubMed  Google Scholar 

  4. Espinosa J, Young J, Jiang H, Gupta D, Vega C, Sanz E, Debenedetti P, Panagiotopoulos A (2016) J Chem Phys 145(15):154111

    CAS  PubMed  Google Scholar 

  5. Schnieders MJ, Baltrusaitis J, Shi Y, Chattree G, Zheng L, Yang W, Ren P (2012) J Chem Theory Comput 8(5):1721–1736

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Li L, Totton T, Frenkel D (2017) J Chem Phys 146(21):214110

    PubMed  Google Scholar 

  7. Guilherme DRM, Mobley DL (2018) F1000Research 7:686

    Google Scholar 

  8. Bellucci MA, Gobbo G, Wijethunga TK, Ciccotti G, Trout BL (2019) J Chem Phys 150(9):094107

    PubMed  Google Scholar 

  9. Garrido NM, Economou IG, Queimada AJ, Jorge M, Macedo EA (2012) AIChE J 58(6):1929–1938

    CAS  Google Scholar 

  10. Yang L, Ahmed A, Sandler SI (2013) J Comput Chem 34(4):284–293

    PubMed  Google Scholar 

  11. Bapat DU, Dalvi VH (2019) J Phys Chem B 123(7):1618–1635

    CAS  PubMed  Google Scholar 

  12. Mester Z, Panagiotopoulos AZ (2015) J Chem Phys 142(4):044507

    PubMed  Google Scholar 

  13. Shell MS (2015) Thermodynamics and statistical mechanics: an integrated approach. Cambridge University Press, Cambridge

    Google Scholar 

  14. Zwanzig RW (1954) J Chem Phys 22(8):1420–1426

    CAS  Google Scholar 

  15. Kirkwood JG (1935) J Chem Phys 3(5):300–313

    CAS  Google Scholar 

  16. Berendsen HJ, van der Spoel D, van Drunen R (1995) Comput Phys Commun 91(1–3):43–56

    CAS  Google Scholar 

  17. Pearlman DA, Case DA, Caldwell JW, Ross WS, Cheatham TE III, DeBolt S, Ferguson D, Seibel G, Kollman P (1995) Comput Phys Commun 91(1–3):1–41

    CAS  Google Scholar 

  18. Plimpton S (1995) J Comput Phys 117(1):1–19

    CAS  Google Scholar 

  19. Paluch AS, Shah JK, Maginn EJ (2011) J Chem Theory Comput 7(5):1394–1403

    CAS  PubMed  Google Scholar 

  20. Lyubartsev AP, Laaksonen A (2000) Comput Phys Commun 128(3):565–589

    CAS  Google Scholar 

  21. Lyubartsev AP, Laaksonen A (2010) MDynaMix: a molecular dynamics program. Stockholm University, Sweden

    Google Scholar 

  22. Klimovich PV, Shirts MR, Mobley DL (2015) J Comput Aided Mol Des 29(5):397–411

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Beutler TC, Mark AE, van Schaik RC, Gerber PR, Van Gunsteren WF (1994) Chem Phys Lett 222(6):529–539

    CAS  Google Scholar 

  24. Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) J Comput Chem 25(9):1157–1174

    CAS  PubMed  Google Scholar 

  25. Jakalian A, Bush BL, Jack DB, Bayly CI (2000) J Comput Chem 21(2):132–146

    CAS  Google Scholar 

  26. Jakalian A, Jack DB, Bayly CI (2002) J Comput Chem 23(16):1623–1641

    CAS  PubMed  Google Scholar 

  27. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) J Chem Phys 79(2):926–935

    CAS  Google Scholar 

  28. Berthelot D (1898) Compt Rendus 126:1703–1706

    Google Scholar 

  29. Lorentz H (1881) Ann Phys 248(1):127–136

    Google Scholar 

  30. Allen MP, Tildesley DJ (2017) Computer simulation of liquids. Oxford University Press, Oxford

    Google Scholar 

  31. Mobley DL, Guthrie JP (2014) J Comput Aided Mol Des 28(7):711–720

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Ryckaert JP, Ciccotti G, Berendsen HJ (1977) J Comput Phys 23(3):327–341

    CAS  Google Scholar 

  33. Andersen HC (1983) J Comput Phys 52(1):24–34

    CAS  Google Scholar 

  34. Ewald PP (1921) Ann Phys 369(3):253–287

    Google Scholar 

  35. Hockney RW, Eastwood JW (1988) Computer simulation using particles. CRC Press, Boca Raton

    Google Scholar 

  36. Martyna GJ, Tobias DJ, Klein ML (1994) J Chem Phys 101(5):4177–4189

    CAS  Google Scholar 

  37. Abramowitz M, Stegun IA (1965) Handbook of mathematical functions: with formulas, graphs, and mathematical tables, vol 55. Courier Corporation, North Chelmsford

    Google Scholar 

  38. Mobley DL, Shirts M, Lim N, Chodera J, Beauchamp K, Lee-Ping (2018) Mobleylab/freesolv: version 0.52. https://doi.org/10.5281/zenodo.1161245

  39. Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, Lindahl E (2015) SoftwareX 1:19–25

    Google Scholar 

  40. Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) J Chem Phys 103(19):8577–8593

    CAS  Google Scholar 

  41. Hess B, Bekker H, Berendsen HJ, Fraaije JG (1997) J Comput Chem 18(12):1463–1472

    CAS  Google Scholar 

  42. Miyamoto S, Kollman PA (1992) J Comput Chem 13(8):952–962

    CAS  Google Scholar 

  43. Goga N, Rzepiela A, De Vries A, Marrink S, Berendsen H (2012) J Chem Theory Comput 8(10):3637–3649

    CAS  PubMed  Google Scholar 

  44. Berendsen HJ, Postma J, van Gunsteren WF, DiNola A, Haak J (1984) J Chem Phys 81(8):3684–3690

    CAS  Google Scholar 

  45. Parrinello M, Rahman A (1981) J Appl Phys 52(12):7182–7190

    CAS  Google Scholar 

  46. Nosé S, Klein M (1983) Mol Phys 50(5):1055–1076

    Google Scholar 

  47. Duarte Ramos Matos G, Kyu DY, Loeffler HH, Chodera JD, Shirts MR, Mobley DL (2017) J Chem Eng Data 62(5):1559–1569

    Google Scholar 

  48. Bennett CH (1976) J Comput Phys 22(2):245–268

    Google Scholar 

  49. Shirts MR, Chodera JD (2008) J Chem Phys 129(12):124105

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful for the financial support provided by Eli Lilly. Use was made of computational facilities purchased with funds from the National Science Foundation (CNS-1725797) and administered by the Center for Scientific Computing (CSC). The CSC is supported by the California NanoSystems Institute and the Materials Research Science and Engineering Center (MRSEC; NSF DMR 1720256) at UC Santa Barbara.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baron Peters.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khanna, V., Monroe, J.I., Doherty, M.F. et al. Performing solvation free energy calculations in LAMMPS using the decoupling approach. J Comput Aided Mol Des 34, 641–646 (2020). https://doi.org/10.1007/s10822-020-00303-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-020-00303-3

Keywords

Navigation