Skip to main content
Log in

Resveratrol as a nontoxic excipient stabilizes insulin in a bioactive hexameric form

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Insulin aggregation is the leading cause of considerable reduction in the amount of active drug molecules in liquid formulations manufactured for diabetes management. Phenolic compounds, such as phenol and m-cresol, are routinely used to stabilize insulin in a hexameric form during its commercial preparation. However, long term usage of commercial insulin results in various adverse secondary responses, for which toxicity of the phenolic excipients is primarily responsible. In this study we aimed to find out a nontoxic insulin stabilizer. To that end, we have selected resveratrol, a natural polyphenol, as a prospective nontoxic insulin stabilizer because of its structural similarity with commercially used phenolic compounds. Atomic force microscopy visualization of resveratrol-treated human insulin revealed that resveratrol has a unique ability to arrest hINS in a soluble oligomeric form having discrete spherical morphology. Most importantly, resveratrol-treated insulin is nontoxic for HepG2 cells and it effectively maintains low blood glucose in a mouse model. Cryo-electron microscopy revealed 3D morphology of resveratrol-stabilized insulin that strikingly resembles crystal structures of insulin hexamer formulated with m-cresol. Significantly, we found that, in a condition inductive to amyloid fibrillation at physiological pH, resveratrol is capable of stabilizing insulin more efficiently than m-cresol. Thus, this study describes resveratrol as an effective nontoxic natural molecule that can be used for stabilizing insulin in a bioactive oligomeric form during its commercial formulation.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Jars MU, Hvass A, Waaben D (2002) Insulin aspart (AspB28 human insulin) derivatives formed in pharmaceutical solutions. Pharm Res 19:621–628

    Article  CAS  PubMed  Google Scholar 

  2. Woods RJ, Alarcon J, McVey E, Pettis RJ (2012) Intrinsic fibrillation of fast-acting insulin analogs. J Diabetes Sci Technol 6:265–276

    Article  PubMed  PubMed Central  Google Scholar 

  3. Brange J, Andersen L, Laursen ED, Meyn G, Rasmussen E (1997) Toward understanding insulin fibrillation. J Pharm Sci 86:517–525

    Article  CAS  PubMed  Google Scholar 

  4. Dische FE, Wernstedt C, Westermark GT, Westermark P, Pepys MB, Rennie JA, Gilbey SG, Watkins PJ (1988) Insulin as an amyloid-fibril protein at sites of repeated insulin injections in a diabetic patient. Diabetologia 31:158–161

    Article  CAS  PubMed  Google Scholar 

  5. Ratha BN, Ghosh A, Brender JR, Gayen N, Ilyas H, Neeraja C, Das KP, Mandal AK, Bhunia A (2016) Inhibition of insulin amyloid fibrillation by a novel amphipathic heptapeptide: mechanistic details studied by spectroscopy in combination with microscopy. J Biol Chem 291:23545–23556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bryant C, Spencer DB, Miller A, Bakaysa DL, McCune KS, Maple SR, Pekar AH, Brems DN (1993) Acid stabilization of insulin. Biochemistry 32:8075–8082

    Article  CAS  PubMed  Google Scholar 

  7. Dunn MF (2005) Zinc-ligand interactions modulate assembly and stability of the insulin hexamer—a review. Biometals 18:295–303

    Article  CAS  PubMed  Google Scholar 

  8. Teska BM, Alarcon J, Pettis RJ, Randolph TW, Carpenter JF (2014) Effects of phenol and meta-cresol depletion on insulin analog stability at physiological temperature. J Pharm Sci 103:2255–2267

    Article  CAS  PubMed  Google Scholar 

  9. Derewenda U, Derewenda Z, Dodson EJ, Dodson GG, Reynolds CD, Smith GD, Sparks C, Swenson D (1989) Phenol stabilizes more helix in a new symmetrical zinc insulin hexamer. Nature 338:594–596

    Article  CAS  PubMed  Google Scholar 

  10. Smith GD, Dodson GG (1992) Structure of a rhombohedral R6 insulin/phenol complex. Proteins 14:401–408

    Article  CAS  PubMed  Google Scholar 

  11. Whittingham JL, Edwards DJ, Antson AA, Clarkson JM, Dodson GG (1998) Interactions of phenol and m-cresol in the insulin hexamer, and their effect on the association properties of B28 pro → Asp insulin analogues. Biochemistry 37:11516–11523

    Article  CAS  PubMed  Google Scholar 

  12. Whittingham JL, Chaudhuri S, Dodson EJ, Moody PC, Dodson GG (1995) X-ray crystallographic studies on hexameric insulins in the presence of helix-stabilizing agents, thiocyanate, methylparaben, and phenol. Biochemistry 34:15553–15563

    Article  CAS  PubMed  Google Scholar 

  13. Smith GD, Ciszak E, Pangborn W (1996) A novel complex of a phenolic derivative with insulin: structural features related to the T→R transition. Protein Sci 5:1502–1511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jarosz-Chobot P, Nowakowska M, Polanska J (2007) Seeking the factors predisposing to local skin inflammatory state development in children with type 1 diabetes (T1DM) treated with continuous subcutaneous insulin infusion (CSII). Exp Clin Endocrinol diabetes 115:179–181

    Article  CAS  PubMed  Google Scholar 

  15. Weber C, Kammerer D, Streit B, Licht AH (2015) Phenolic excipients of insulin formulations induce cell death, pro-inflammatory signaling and MCP-1 release. Toxicol Rep 2:194–202

    Article  CAS  PubMed  Google Scholar 

  16. Johansson UB, Adamson U, Lins PE, Wredling R (2005) Patient management of long-term continuous subcutaneous insulin infusion. J Adv Nurs 51:112–118

    Article  PubMed  Google Scholar 

  17. Sanders JM, Bucher JR, Peckham JC, Kissling GE, Hejtmancik MR, Chhabra RS (2009) Carcinogenesis studies of cresols in rats and mice. Toxicology 257:33–39

    Article  CAS  PubMed  Google Scholar 

  18. Waugh DF (1957) A mechanism for the formation of fibrils from protein molecules. J Cell Physiol Suppl 49:145–164

    Article  CAS  PubMed  Google Scholar 

  19. Selivanova OM, Galzitskaya OV (2012) Structural polymorphism and possible pathways of amyloid fibril formation on the example of insulin protein. Biochemistry (Mosc) 77:1237–1247

    Article  CAS  Google Scholar 

  20. Yoshihara H, Saito J, Tanabe A, Amada T, Asakura T, Kitagawa K, Asada S (2016) Characterization of novel insulin fibrils that show strong cytotoxicity under physiological pH. J Pharm Sci 105:1419–1426

    Article  CAS  PubMed  Google Scholar 

  21. Tang G, Peng L, Baldwin PR, Mann DS, Jiang W, Rees I, Ludtke SJ (2007) EMAN2: an extensible image processing suite for electron microscopy. J Struct Biol 157:38–46

    Article  CAS  PubMed  Google Scholar 

  22. Grigorieff N (2007) FREALIGN: high-resolution refinement of single particle structures. J Struct Biol 157:117–125

    Article  CAS  PubMed  Google Scholar 

  23. Grant T, Rohou A, Grigorieff N (2018) cisTEM, user-friendly software for single-particle image processing. eLife. 7:e35383

    Article  PubMed  PubMed Central  Google Scholar 

  24. Sorzano CO, Marabini R, Velazquez-Muriel J, Bilbao-Castro JR, Scheres SH, Carazo JM, Pascual-Montano A (2004) XMIPP: a new generation of an open-source image processing package for electron microscopy. J Struct Biol 148:194–204

    Article  CAS  PubMed  Google Scholar 

  25. Shaikh TR, Gao H, Baxter WT, Asturias FJ, Boisset N, Leith A, Frank J (2008) SPIDER image processing for single-particle reconstruction of biological macromolecules from electron micrographs. Nat Protoc 3:1941–1974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Trabuco LG, Villa E, Schreiner E, Harrison CB, Schulten K (2009) Molecular dynamics flexible fitting: a practical guide to combine cryo-electron microscopy and X-ray crystallography. Methods 49:174–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Afgan E, Baker D, Batut B, van den Beek M, Bouvier D, Cech M, Chilton J, Clements D, Coraor N, Gruning BA, Guerler A, Hillman-Jackson J, Hiltemann S, Jalili V, Rasche H, Soranzo N, Goecks J, Taylor J, Nekrutenko A, Blankenberg D (2018) The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update. Nucleic Acids Res 46:W537–W544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Schneidman-Duhovny D, Inbar Y, Nussinov R, Wolfson HJ (2005) PatchDock and SymmDock: servers for rigid and symmetric docking. Nucleic Acids Res 33:W363–W367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30:2785–2791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Grosdidier A, Zoete V, Michielin O (2011) SwissDock, a protein-small molecule docking web service based on EADock DSS. Nucleic Acids Res 39:W270–W277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612

    Article  CAS  PubMed  Google Scholar 

  32. Ehrnhoefer DE, Bieschke J, Boeddrich A, Herbst M, Masino L, Lurz R, Engemann S, Pastore A, Wanker EE (2008) EGCG redirects amyloidogenic polypeptides into unstructured, off-pathway oligomers. Nat Struct Mol Biol 15:558–566

    Article  CAS  PubMed  Google Scholar 

  33. Gong H, He Z, Peng A, Zhang X, Cheng B, Sun Y, Zheng L, Huang K (2014) Effects of several quinones on insulin aggregation. Sci Rep 4:5648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Smith GD, Ciszak E, Magrum LA, Pangborn WA, Blessing RH (2000) R6 hexameric insulin complexed with m-cresol or resorcinol. Acta Crystallogr D Biol Crystallogr 56:1541–1548

    Article  CAS  PubMed  Google Scholar 

  35. Mishra R, Sellin D, Radovan D, Gohlke A, Winter R (2009) Inhibiting islet amyloid polypeptide fibril formation by the red wine compound resveratrol. ChemBioChem 10:445–449

    Article  CAS  PubMed  Google Scholar 

  36. Dhouafli Z, Cuanalo-Contreras K, Hayouni EA, Mays CE, Soto C, Moreno-Gonzalez I (2018) Inhibition of protein misfolding and aggregation by natural phenolic compounds. Cell Mol Life Sci 75:3521–3538

    Article  CAS  PubMed  Google Scholar 

  37. Costabile G, Vitale M, Luongo D, Naviglio D, Vetrani C, Ciciola P, Tura A, Castello F, Mena P, Del Rio D, Capaldo B, Rivellese AA, Riccardi G, Giacco R (2018) Grape pomace polyphenols improve insulin response to a standard meal in healthy individuals: A pilot study. Clin Nutr 38:2727–2734

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by SERB, DST (India) sponsored project, DBT contingency fund for Research Associate (DBT-RA, India), and CSIR-Indian Institute of Chemical Biology, Kolkata, India. BP sincerely thanks DBT for providing Research associate Fellowship. We acknowledge the Central Instrument Facility (CIF) (and all the technical staff associated with it) of CSIR-IICB for their help in all respect. We sincerely thank Dr. Ilic Zoran of Wadsworth Center, NY, USA, for critically checking the manuscript and Mr. Chiranjit Biswas for cryo-EM data collection. DD and SB acknowledge UGC and CSIR (India), respectively, for Senior Research Fellowship. Financial support from the DBT-RA Program in Biotechnology and Life Sciences is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

BP and JS conceived the project and designed the experiments. BP carried out biochemical and biophysical experiments and 3D image processing of cryo-EM data. DD performed cell-based and animal experiments under the supervision of PC. SB assisted in cryo-EM data processing. BP, DD, PC and JS analyzed the data and wrote the manuscript.

Corresponding authors

Correspondence to Partha Chakrabarti or Jayati Sengupta.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Accession numbers

The cryo-EM density map of reveratrol-stabilized oligomeric form of insulin was deposited in the Electron Microscopy Data Bank (EMDB) under the accession number EMD-9878, and the fitted model was deposited in the RCSB Protein Data Bank (PDB) under the accession code 6JR3.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 8754 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pathak, B.K., Das, D., Bhakta, S. et al. Resveratrol as a nontoxic excipient stabilizes insulin in a bioactive hexameric form. J Comput Aided Mol Des 34, 915–927 (2020). https://doi.org/10.1007/s10822-020-00311-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-020-00311-3

Keywords

Navigation