Skip to main content

Advertisement

Log in

Improved prediction and characterization of blood-brain barrier penetrating peptides using estimated propensity scores of dipeptides

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

The blood-brain barrier (BBB) is the primary barrier with a highly selective semipermeable border between blood vascular endothelial cells and the central nervous system. Since BBB can prevent drugs circulating in the blood from crossing into the interstitial fluid of the brain where neurons reside, many researchers are working hard on developing drug delivery systems to penetrate the BBB which currently poses a challenge. Thus, blood-brain barrier penetrating peptides (B3PPs) are an alternative neurotherapeutic for brain-related disorder since they can facilitate drug delivery into the brain. In the meanwhile, developing computational methods that are effective for both the identification and characterization of B3PPs in a cost-effective manner plays an important role for basic reach and in the pharmaceutical industry. Even though few computational methods for B3PP identification have been developed, their performance might fail in terms of generalization ability and interpretability. In this study, a novel and efficient scoring card method-based predictor (termed SCMB3PP) is presented for improving B3PP identification and characterization. To overcome the limitation of black-box computational approaches, the SCMB3PP predictor can automatically estimate amino acid and dipeptide propensities to be B3PPs. Both cross-validation and independent tests indicate that SCMB3PP can achieve impressive performance and outperform various popular machine learning-based methods and the existing methods on multiple independent test datasets. Furthermore, SCMB3PP-derived amino acid propensities were utilized to identify informative biophysical and biochemical properties for characterizing B3PPs. Finally, an online user-friendly web server (http://pmlabstack.pythonanywhere.com/SCMB3PP) is established to identify novel and potential B3PP cost-effectively. This novel computational approach is anticipated to facilitate the large-scale identification of high potential B3PP candidates for follow-up experimental validation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data and software availability

All the data used in this study are available at http://pmlabstack.pythonanywhere.com/SCMB3PP.

References

  1. Feigin VL et al (2019) “Global, regional, and national burden of neurological disorders, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016,“. Lancet Neurol 18(5):459–480

    Article  Google Scholar 

  2. Abbott NJ, Patabendige AA, Dolman DE, Yusof SR, Begley DJ (2010) Structure and function of the blood–brain barrier. Neurobiol Dis 37(1):13–25

    Article  CAS  PubMed  Google Scholar 

  3. Zhou X, Smith QR, Liu X (2021) Brain penetrating peptides and peptide–drug conjugates to overcome the blood–brain barrier and target CNS diseases,. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology 13(4):e1695

    PubMed  Google Scholar 

  4. Stalmans S et al (2013) “Chemical-functional diversity in cell-penetrating peptides,“. PLoS ONE 8(8):e71752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Madani F, Lindberg S, Langel Ü, Futaki S, Gräslund A (2011) “Mechanisms of cellular uptake of cell-penetrating peptides,“ Journal of biophysics, vol. 2011

  6. Yamano S et al (2014) “Long-term efficient gene delivery using polyethylenimine with modified Tat peptide,“ Biomaterials, vol. 35, no. 5, pp. 1705–1715, 2014/02/01/

  7. Huwyler J, Wu D, Pardridge WM (1996) “Brain drug delivery of small molecules using immunoliposomes,“ Proceedings of the National Academy of Sciences, vol. 93, no. 24, pp. 14164–14169,

  8. Knight A, Carvajal J, Schneider H, Coutelle C, Chamberlain S, Fairweather N (1999) Non-viral neuronal gene delivery mediated by the HC fragment of tetanus toxin,. Eur J Biochem 259(3):762–769

    Article  CAS  PubMed  Google Scholar 

  9. El-Andaloussi S, Holm T, Langel U (2005) “Cell-penetrating peptides: mechanisms and applications,“. Curr Pharm Design 11(28):3597–3611

    Article  CAS  Google Scholar 

  10. Milletti F (2012) “Cell-penetrating peptides: classes, origin, and current landscape,“. Drug Discovery Today 17:15–16

    Article  Google Scholar 

  11. Lindgren M, Langel Ü (2011) “Classes and prediction of cell-penetrating peptides,“Cell-Penetrating Peptides,pp.3–19,

  12. Stewart KM, Horton KL, Kelley SO (2008) “Cell-penetrating peptides as delivery vehicles for biology and medicine,“. Org Biomol Chem 6(13):2242–2255

    Article  CAS  PubMed  Google Scholar 

  13. Mueller J, Kretzschmar I, Volkmer R, Boisguerin P (2008) Comparison of cellular uptake using 22 CPPs in 4 different cell lines. Bioconjug Chem 19(12):2363–2374

    Article  CAS  PubMed  Google Scholar 

  14. Meade A, Meloni B, Mastaglia F, Knuckey N (2009) The application of cell penetrating peptides for the delivery of neuroprotective peptides/proteins in experimental cerebral ischaemia studies,. J Experimental Stroke Translational Med 2(1):22–40

    Article  CAS  Google Scholar 

  15. Mathur D et al (2016) PEPlife: a repository of the half-life of peptides. Sci Rep 6(1):1–7

    Article  Google Scholar 

  16. Stalmans S et al (2015) “Cell-penetrating peptides selectively cross the blood-brain barrier in vivo,“. PLoS ONE 10(10):e0139652

    Article  PubMed  PubMed Central  Google Scholar 

  17. Wei L, Zhou C, Su R, Zou Q (2019) “PEPred-Suite: improved and robust prediction of therapeutic peptides using adaptive feature representation learning,“ Bioinformatics, vol. 35, no. 21, pp. 4272–4280,

  18. Zhang YP, Zou Q (2020) “PPTPP: a novel therapeutic peptide prediction method using physicochemical property encoding and adaptive feature representation learning,“ Bioinformatics, vol. 36, no. 13, pp. 3982–3987,

  19. Tang W et al (2022) “Identifying multi-functional bioactive peptide functions using multi-label deep learning,“. Brief Bioinform 23(1):bbab414

    Article  PubMed  Google Scholar 

  20. Dai R et al (2021) “BBPpred: sequence-based prediction of blood-brain barrier peptides with feature representation learning and logistic regression,“. J Chem Inf Model 61(1):525–534

    Article  CAS  PubMed  Google Scholar 

  21. Zou H (2021) “Identifying blood-brain barrier peptides by using amino acids physicochemical properties and features fusion method,“Peptide Science, p.e24247,

  22. Kumar V, Patiyal S, Dhall A, Sharma N, Raghava GPS (2021) “B3pred: A random-forest-based method for predicting and designing blood–brain barrier penetrating peptides,“ Pharmaceutics, vol. 13, no. 8, p. 1237,

  23. He W et al (2022) “Accelerating bioactive peptide discovery via mutual information-based meta-learning,“. Brief Bioinform 23(1):bbab499

    Article  PubMed  Google Scholar 

  24. Kumar V et al (2021) “B3Pdb: an archive of blood–brain barrier-penetrating peptides,“. Brain Struct Function 226(8):2489–2495

    Article  CAS  Google Scholar 

  25. Van Dorpe S et al (2012) “Brainpeps: the blood–brain barrier peptide database,“. Brain Struct Function 217(3):687–718

    Article  CAS  Google Scholar 

  26. Boutet E et al (2016) “UniProtKB/Swiss-Prot, the manually annotated section of the UniProt KnowledgeBase: how to use the entry view,“. Plant Bioinformatics. Springer, pp 23–54

  27. Charoenkwan P, Kanthawong S, Nantasenamat C, Hasan MM, Shoombuatong W (2020) “iDPPIV-SCM: A sequence-based predictor for identifying and analyzing dipeptidyl peptidase IV (DPP-IV) inhibitory peptides using a scoring card method,“. J Proteome Res 19(10):4125–4136

    Article  CAS  PubMed  Google Scholar 

  28. Charoenkwan P, Chiangjong W, Lee VS, Nantasenamat C, Hasan MM, Shoombuatong W (2021) Improved prediction and characterization of anticancer activities of peptides using a novel flexible scoring card method. Sci Rep 11(1):1–13

    Article  Google Scholar 

  29. Charoenkwan P, Chotpatiwetchkul W, Lee VS, Nantasenamat C, Shoombuatong W (2021) “A novel sequence-based predictor for identifying and characterizing thermophilic proteins using estimated propensity scores of dipeptides,“. Sci Rep 11(1):1–15

    Article  Google Scholar 

  30. Vasylenko T et al (2016) “SCMBYK: prediction and characterization of bacterial tyrosine-kinases based on propensity scores of dipeptides,“. BMC Bioinformatics 17(19):203–217

    Google Scholar 

  31. Liou Y-F et al (2014) “SCMHBP: prediction and analysis of heme binding proteins using propensity scores of dipeptides,“. BMC Bioinformatics 15(16):1–14

    Google Scholar 

  32. Vasylenko T, Liou Y-F, Chen H-A, Charoenkwan P, Huang H-L, Ho S-Y (2015) “SCMPSP: Prediction and characterization of photosynthetic proteins based on a scoring card method,“ in BMC bioinformatics, vol. 16, no. 1, pp. 1–16: BioMed Central

  33. Charoenkwan P, Kanthawong S, Nantasenamat C, Hasan MM, Shoombuatong W (2020) “iAMY-SCM: Improved prediction and analysis of amyloid proteins using a scoring card method with propensity scores of dipeptides,“ Genomics,

  34. Charoenkwan P, Yana J, Nantasenamat C, Hasan MM, Shoombuatong W (2020) “iUmami-SCM: a novel sequence-based predictor for prediction and analysis of umami peptides using a scoring card method with propensity scores of dipeptides,“. J Chem Inf Model 60(12):6666–6678

    Article  CAS  PubMed  Google Scholar 

  35. Charoenkwan P, Yana J, Schaduangrat N, Nantasenamat C, Hasan MM, Shoombuatong W (2020) “iBitter-SCM: Identification and characterization of bitter peptides using a scoring card method with propensity scores of dipeptides,“ Genomics, vol. 112, no. 4, pp. 2813–2822,

  36. Huang H-L et al (2012) “Prediction and analysis of protein solubility using a novel scoring card method with dipeptide composition,“ in BMC bioinformatics, vol. 13, no. 17, pp. 1–14: Springer

  37. Charoenkwan P, Shoombuatong W, Lee H-C, Chaijaruwanich J, Huang H-L, Ho S-Y (2013) “SCMCRYS: predicting protein crystallization using an ensemble scoring card method with estimating propensity scores of P-collocated amino acid pairs,“. PLoS ONE 8(9):e72368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Charoenkwan P, Chiangjong W, Nantasenamat C, Hasan MM, Manavalan B, Shoombuatong W (2021) “StackIL6: a stacking ensemble model for improving the prediction of IL-6 inducing peptides,“. Brief Bioinform 22(6):bbab172

    Article  PubMed  Google Scholar 

  39. Charoenkwan P, Nantasenamat C, Hasan MM, Manavalan B, Shoombuatong W (2021) “BERT4Bitter: a bidirectional encoder representations from transformers (BERT)-based model for improving the prediction of bitter peptides,“ Bioinformatics, vol. 37, no. 17, pp. 2556–2562,

  40. Pedregosa F et al (2011) “Scikit-learn: Machine learning in Python,“. J Mach Learn Res 12:2825–2830

    Google Scholar 

  41. Azadpour M, McKay CM, Smith RL (2014) “Estimating confidence intervals for information transfer analysis of confusion matrices,“The Journal of the Acoustical Society of America, vol. 135, no. 3, pp. EL140-EL146,

  42. Dao F-Y, Lv H, Zhang D, Zhang Z-M, Liu L, Lin H (2021) “DeepYY1: a deep learning approach to identify YY1-mediated chromatin loops,“. Brief Bioinform 22(4):bbaa356

    Article  PubMed  Google Scholar 

  43. Yang H et al (2020) “A comparison and assessment of computational method for identifying recombination hotspots in Saccharomyces cerevisiae,“. Brief Bioinform 21(5):1568–1580

    Article  PubMed  Google Scholar 

  44. Dao F-Y et al (2019) “Identify origin of replication in Saccharomyces cerevisiae using two-step feature selection technique,“ Bioinformatics, vol. 35, no. 12, pp. 2075–2083,

  45. Chen W, Lv H, Nie F, Lin H (2019) “i6mA-Pred: identifying DNA N6-methyladenine sites in the rice genome,“ Bioinformatics, vol. 35, no. 16, pp. 2796–2800,

  46. Lv H, Dao F-Y, Guan Z-X, Yang H, Li Y-W, Lin H (2021) Deep-Kcr: accurate detection of lysine crotonylation sites using deep learning method,. Brief Bioinform 22(4):bbaa255

    Article  PubMed  Google Scholar 

  47. Xu Z-C, Feng P-M, Yang H, Qiu W-R, Chen W, Lin H (2019) “iRNAD: a computational tool for identifying D modification sites in RNA sequence,“ Bioinformatics, vol. 35, no. 23, pp. 4922–4929,

  48. Varma S, Simon R (2006) Bias in error estimation when using cross-validation for model selection,. BMC Bioinformatics 7(1):1–8

    Article  Google Scholar 

  49. Vabalas A, Gowen E, Poliakoff E, Casson AJ (2019) Machine learning algorithm validation with a limited sample size,. PLoS ONE 14(11):e0224365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Futaki S, Nakase I, Tadokoro A, Takeuchi T, Jones AT (2007) Arginine-rich peptides and their internalization mechanisms,. Biochem Soc Trans 35(4):784–787

    Article  CAS  PubMed  Google Scholar 

  51. Ida H et al “Nanoscale Visualization of Morphological Alteration of Live-Cell Membranes by the Interaction with Oligoarginine Cell-Penetrating Peptides,“Analytical Chemistry, vol. 93, no. 13, pp.5383–5393, 2021/04/06 2021.

  52. Kawaguchi Y et al “Dipicolylamine/Metal Complexes that Promote Direct Cell-Membrane Penetration of Octaarginine,“Bioconjugate Chemistry, vol. 30, no. 2, pp.454–460, 2019/02/20 2019.

  53. Vazdar M et al “Arginine “Magic”: Guanidinium Like-Charge Ion Pairing from Aqueous Salts to Cell Penetrating Peptides,“Accounts of Chemical Research, vol. 51, no. 6, pp.1455–1464, 2018/06/19 2018.

  54. Zou X, Rajendran M, Magda D, Miller LW “Cytoplasmic Delivery and Selective, Multicomponent Labeling with Oligoarginine-Linked Protein Tags,“Bioconjugate Chemistry, vol. 26, no. 3, pp.460–465, 2015/03/18 2015.

  55. Münter R et al (2022) “Mechanisms of selective monocyte targeting by liposomes functionalized with a cationic, arginine-rich lipopeptide,“. Acta Biomater 144:96–108 2022/05/01/

    Article  PubMed  Google Scholar 

  56. Bode SA, Timmermans SBPE, Eising S, van Gemert SPW, Bonger KM, Löwik DWPM (2019) Click to enter: activation of oligo-arginine cell-penetrating peptides by bioorthogonal tetrazine ligations,. Chem Sci 10(3):701–705. https://doi.org/10.1039/C8SC04394A

    Article  CAS  PubMed  Google Scholar 

  57. Wu L-P et al “Crossing the blood-brain-barrier with nanoligand drug carriers self-assembled from a phage display peptide,“Nature Communications, vol. 10, no. 1, p.4635, 2019/10/11 2019.

  58. Elmquist A, Hansen M, Langel Ü (2006) “Structure–activity relationship study of the cell-penetrating peptide pVEC,“ Biochimica et Biophysica Acta (BBA) - Biomembranes, vol. 1758, no. 6, pp. 721–729, 2006/06/01/

  59. Oller-Salvia B, Sánchez-Navarro M, Giralt E, Teixido M (2016) Blood–brain barrier shuttle peptides: an emerging paradigm for brain delivery,. Chem Soc Rev 45(17):4690–4707

    Article  CAS  PubMed  Google Scholar 

  60. Sarko D et al “The Pharmacokinetics of Cell-Penetrating Peptides,“Molecular Pharmaceutics, vol. 7, no. 6, pp.2224–2231, 2010/12/06 2010.

  61. Yang NJ, Hinner MJ (2015) “Getting across the cell membrane: an overview for small molecules, peptides, and proteins,“ (in eng), Methods in molecular biology (Clifton, N.J.), vol. 1266, pp. 29–53,

  62. Delaney JS “ESOL: Estimating Aqueous Solubility Directly from Molecular Structure,“Journal of Chemical Information and Computer Sciences, vol. 44, no. 3, pp.1000–1005, 2004/05/01 2004.

  63. Ottaviani G, Gosling DJ, Patissier C, Rodde S, Zhou L, Faller B “What is modulating solubility in simulated intestinal fluids?,“ (in eng),European journal of pharmaceutical sciences: official journal of the European Federation for Pharmaceutical Sciences, vol. 41, no.3–4, pp. 452–457, 2010/11// 2010.

  64. Ali J, Camilleri P, Brown MB, Hutt AJ, Kirton SB “Revisiting the General Solubility Equation: In Silico Prediction of Aqueous Solubility Incorporating the Effect of Topographical Polar Surface Area,“Journal of Chemical Information and Modeling, vol. 52, no. 2, pp.420–428, 2012/02/27 2012.

  65. Falanga A et al “Enhanced uptake of gH625 by blood brain barrier compared to liver in vivo: characterization of the mechanism by an in vitro model and implications for delivery,“Scientific Reports, vol. 8, no. 1, p.13836, 2018/09/14 2018.

  66. Stalmans S et al (2014) “Blood-Brain Barrier Transport of Short Proline-Rich Antimicrobial Peptides,“. Protein & Peptide Letters 21(4):399–406

    Article  CAS  Google Scholar 

  67. Benrabh H, Lefauconnier JM “Blood-endothelial cell and blood-brain transport ofl-proline, α-aminoisobutyric acid, andl-alanine,“Neurochemical Research, vol. 21, no. 10, pp.1227–1235, 1996/10/01 1996.

  68. Sánchez-Navarro M, Teixidó M, Giralt E “Jumping Hurdles: Peptides Able To Overcome Biological Barriers,“Accounts of Chemical Research, vol. 50, no. 8, pp.1847–1854, 2017/08/15 2017.

  69. Gao J et al “Proline-Loaded Chitosan Nanoparticles Penetrate the Blood-Brain Barrier to Confer Neuroprotection in Mice Cerebral Ischemia Injury,“ Available at SSRN 4104458

  70. Hau VS, Huber JD, Campos CR, Lipkowski AW, Misicka A, Davis TP (2002/10/01 2002) Effect of guanidino modification and proline substitution on the in vitro stability and blood–brain barrier permeability of endomorphin II,. J Pharm Sci 91(10):2140–2149. https://doi.org/10.1002/jps.10202

  71. Rackovsky S, Scheraga H “Hydrophobicity, hydrophilicity, and the radial and orientational distributions of residues in native proteins,“ Proceedings of the National Academy of Sciences, vol. 74, no. 12, pp. 5248–5251, 1977

  72. Fukuchi S, Nishikawa K (2001) Protein surface amino acid compositions distinctively differ between thermophilic and mesophilic bacteria,. J Mol Biol 309(4):835–843

    Article  CAS  PubMed  Google Scholar 

  73. Qian N, Sejnowski TJ (1988) Predicting the secondary structure of globular proteins using neural network models,. J Mol Biol 202(4):865–884

    Article  CAS  PubMed  Google Scholar 

  74. Ghasemy S, García-Pindado J, Aboutalebi F, Dormiani K, Teixidó M, Malakoutikhah M (2018) “Fine-tuning the physicochemical properties of peptide-based blood–brain barrier shuttles,“ Bioorganic & Medicinal Chemistry, vol. 26, no. 8, pp. 2099–2106, /05/01/ 2018

  75. Costantino L, Gandolfi F, Tosi G, Rivasi F, Vandelli MA, Forni F (2005) Peptide-derivatized biodegradable nanoparticles able to cross the blood–brain barrier,. J Controlled Release 108(1):84–96

    Article  CAS  Google Scholar 

  76. Clark DE (1999) “Rapid calculation of polar molecular surface area and its application to the prediction of transport phenomena. 2. Prediction of blood–brain barrier penetration,“. J Pharm Sci 88(8):815–821

    Article  CAS  PubMed  Google Scholar 

  77. Adenot M, Lahana R “Blood-Brain Barrier Permeation Models: Discriminating between Potential CNS and Non-CNS Drugs Including P-Glycoprotein Substrates,“Journal of Chemical Information and Computer Sciences, vol. 44, no. 1, pp.239–248, 2004/01/01 2004.

  78. Gratton JA, Abraham MH, Bradbury MW, Chadha HS (1997) Molecular factors influencing drug transfer across the blood-brain barrier,. J Pharm Pharmacol 49(12):1211–1216

    Article  CAS  PubMed  Google Scholar 

  79. Sá MMd, Pasqualoto KFM, Rangel-Yagui CdO (2010) “A 2D-QSPR approach to predict blood-brain barrier penetration of drugs acting on the central nervous system,“. Brazilian J Pharm Sci 46(4):741–751

    Article  Google Scholar 

  80. Garg P, Verma J, Roy N (2008) In silico modeling for blood—brain barrier permeability predictions,“ in Drug absorption studies. Springer, pp 510–556

  81. Ohnishi T, Maruyama T, Higashi S, Awazu S (2000) “Blood-Brain Barrier Transport of L-iyrosine Conjugates: a Model Study for the Brain Targeting using Large Neutral Amino Acid Transport System,“. J Drug Target 8(6):395–401

    Article  CAS  PubMed  Google Scholar 

  82. Jongkees BJ, Hommel B, Kühn S, Colzato LS (2015) Effect of tyrosine supplementation on clinical and healthy populations under stress or cognitive demands—A review,. J Psychiatr Res 70:50–57

    Article  PubMed  Google Scholar 

  83. McMeekin TL, Groves ML, Hipp NJ (1964) Refractive indices of amino acids, proteins, and related substances,“. ACS Publications

  84. McCaffrey G et al (2008) “Occludin oligomeric assembly at tight junctions of the blood-brain barrier is disrupted by peripheral inflammatory hyperalgesia,“. J Neurochem 106(6):2395–2409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Wang L, Murata R, Inoue K-i, Ye S, Morita A (2021) Dispersion of Complex Refractive Indices for Intense Vibrational Bands. II. Implication to Sum Frequency Generation Spectroscopy,. J Phys Chem B 125(34):9804–9810

    Article  CAS  PubMed  Google Scholar 

  86. Kuipers BJ, Gruppen H (2007) Prediction of molar extinction coefficients of proteins and peptides using UV absorption of the constituent amino acids at 214 nm to enable quantitative reverse phase high-performance liquid chromatography – mass spectrometry analysis,. J Agric Food Chem 55(14):5445–5451

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was fully supported by College of Arts, Media and Technology, Chiang Mai University, and partially supported by Chiang Mai University and Mahidol University. In addition, computational resources were supported by Information Technology Service Center (ITSC) of Chiang Mai University.

Author information

Authors and Affiliations

Authors

Contributions

Project administration, supervision, and conceptualization: W.S.; software and web server development: P.C.; methodology, visualization, and validation: P.C. and W.S.; investigation, analysis and writing—original draft: P.M. W.S., M.A.M, and P.L; writing—review and editing: N.S. and W.S. All authors reviewed and approved the manuscript.

Corresponding author

Correspondence to Watshara Shoombuatong.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Charoenkwan, P., Chumnanpuen, P., Schaduangrat, N. et al. Improved prediction and characterization of blood-brain barrier penetrating peptides using estimated propensity scores of dipeptides. J Comput Aided Mol Des 36, 781–796 (2022). https://doi.org/10.1007/s10822-022-00476-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-022-00476-z

Keywords

Navigation