Skip to main content
Log in

Dependence of Visual Cell Properties on Intracortical Synapses Among Hypercolumns: Analysis by a Computer Model

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

The role of intracortical synapses in affecting the property of visual cells is investigated by means of an original mathematical model of cortical circuitry in V1. The model represents a compromise between computational simplicity and physiological reliability. The model incorporates four different inputs into a cortical cell: thalamic input from the lateral geniculate nucleus, according to an even Gabor function; short-range inhibition confined within the hypercolumn; a long-range excitation, which emphasizes the properties of the input; and a long-range inhibition. In the model we assume that all cells receive a similar thalamic input, which differs simply according to its position in the retina and orientation preference.

Simulations were performed, with different parameter values, to assess the main characteristics of cell response (i.e., the width and locations of subregions in the receptive field (RF), orientation tuning curve, and response to drifting and counterphase gratings) as a function of the strength and extension of intracortical excitatory synapses. Results suggest that, if intracortical excitation is confined within the hypercolumn, the cells exhibit the same properties as simple cells, both with regards to the width and shape of the RF, orientation tuning curve, and response to drifting and counterphase gratings. By contrast, if excitatory synapses extend beyond the hypercolumn with sufficient strength, the cells exhibit the typical characteristics of complex cells. A progressive shift from complex to simple cells can be realized with a monotonic variation in parameters. Simulations are also performed with a hierarchical model, to suggest possible experiments able to discriminate the present recurrent mechanism from the classical hierarchical one.

Results support the assumptions of previous simpler models (Chance et al., 1999) and may help to understand and assess the role of intracortical synapses in rigorous quantitative terms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alonso JM, Martinez LM (1998) Functional connectivity between simple cells and complex cells in cat striate cortex. Nature neuroscience 1: 395–403.

    Article  CAS  PubMed  Google Scholar 

  • Angelucci A, Bullier J (2003) Reaching beyond the classical receptive field of V1 neurons: horizontal or feedback axons? J Physiol. (Paris) 97: 141–154.

    Google Scholar 

  • Angelucci A, Levitt JB, Walton JSE, Hupé JM, Bullier J, Lund JS (2002) Circuits for Local and Global Signal Integration in Primary Visual Cortex. J. Neurosci. 22: 8633–8646.

    CAS  PubMed  Google Scholar 

  • Ben-Yishai R, Bar O, Sompolinsky H (1995) Theory of orientation tuning in visual cortex. Proc. Natl. Acad. Sci. USA 92: 3844–3848.

    CAS  PubMed  Google Scholar 

  • Chance FS, Nelson SB, Abbott LF (1999) Complex cells as cortically amplified simple cells. Nature Neurosci. 2: 277–282.

    CAS  PubMed  Google Scholar 

  • De Angelis GC, Ozhawa I, Freeman RD (1995) Receptive-field dynamics in the central visual pathways. Trends Neurosci. 18: 451–458.

    Google Scholar 

  • De Angelis GC, Robson JG, Ozhawa I, Freeman RD (1992) Organization of suppression in receptive fields of neurons in cat visual cortex. J. Neurophysi. 68: 144–163.

    Google Scholar 

  • Dean AF, Tolhurst DJ (1983) On the distinctness of simple and complex cells in the visual cortex of the cat. J. Physiol. (London) 344: 305–325.

    CAS  Google Scholar 

  • Ferster D, Lindstrom S (1983) An intracellular analysis of geniculo-cortical connectivity in area 17 of the cat. J. Physiol. (London) 342: 181–215.

    CAS  Google Scholar 

  • Ferster D, Miller KD (2000) Neural mechanisms of orientation selectivity in the visual cortex. Annu. Rev. Neurosci. 23: 441–471.

    Article  CAS  PubMed  Google Scholar 

  • Field DJ, Hayes A, Hess RF (1993) Contour integration by the human visual system: Evidence for a local Association Field. Vision Res. 33: 173–193.

    Article  CAS  PubMed  Google Scholar 

  • Gabbott PL, Somogyi P (1986) Quantitative distribution of GABA-immunoreactive neurons in the visual cortex (area 17) of the cat. Exp. Brain Res. 61: 323–331.

    CAS  PubMed  Google Scholar 

  • Gilbert CD (1992) Horizontal integration and cortical dynamics. Neuron. 9: 1–13.

    Article  CAS  PubMed  Google Scholar 

  • Gilbert CD, Wiesel TN (1989) Columnar specificity of intrinsic horizontal and corticocortical connections in cat visual cortex. J. Neurosci. 9: 2432–2442.

    CAS  PubMed  Google Scholar 

  • Hammond P, MacKay DM (1977) Differential responsiveness of simple and complex cells in cat striate cortex to visual texture. Exp. Brain Res. 30: 275–296.

    Article  CAS  PubMed  Google Scholar 

  • Heggelund P, Albus K (1978) Response variability and orientation discrimination of single cells in striate cortex of cat. Exp. Brain Res. 32: 197–211.

    Article  CAS  PubMed  Google Scholar 

  • Henry GH (1985) Physiology of the cat visual cortex. In: Co.Ed.E.G.Jones and A.Peters., ed. Cerebral cortex. Plenum Publishing, New York.

    Google Scholar 

  • Hubel D, Wiesel TN (1962) Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. J. Physiol. 160: 106–154.

    CAS  PubMed  Google Scholar 

  • Jones JP, Palmer LA (1987a) An evaluation of the two-dimensional Gabor filter model of simple receptive fields in cat striate cortex. J. Neurophysi. 58: 1233–1258.

    CAS  Google Scholar 

  • Jones JP, Palmer LA (1987b) The two-dimensional spatial structure of simple receptive fields in cat striate cortex. J. Neurophysi. 58: 1187–1211.

    CAS  Google Scholar 

  • Kapadia MK, Ito M, Gilbert CD, Westheimer G (1995) Improvement in visual sensitivity by changes in local context: Parallel studies in human observers and in V1 alert monkeys. Neuron. 15: 843–856.

    Article  CAS  PubMed  Google Scholar 

  • Kapadia MK, Westheimer G, Gilbert CD (2000) Spatial distribution of contextual interactions in primary visual cortex and in visual perception. J. Neurophysi. 84: 2048–2062.

    CAS  PubMed  Google Scholar 

  • Kisvarday Z (1997) Orientation-specific relationship between populations of excitatory and inhibitory lateral connections in the visual cortex of the cat. Cerebral. Cortex. 7: 605–618.

    Article  CAS  PubMed  Google Scholar 

  • Kisvarday Z, Crook JM, Buzas P, Eysel U (2000) Combined physiological-anatomical approaches to study lateral inhibition. J. Neurosci. Meth. 103: 91–106.

    CAS  Google Scholar 

  • Lamme VA, Rodriguez-Rodriguez V, Spekreijse H (1999) Separate processing dynamics for texture elements, boundaries and surfaces in primary visual cortex of the macaque monkey. Cerebral. Cortex. 9: 406–413.

    Article  CAS  PubMed  Google Scholar 

  • Levi DK, Klein SA, Aitsebaomo AP (1985) Vernier acuity, crowding and cortical magnification. Vision Res 25: 963–977.

    CAS  PubMed  Google Scholar 

  • Li W, Thier P, Wehrhahn C (2001) Neuronal responses from beyond the classic receptive field in V1 of alert monkeys. Exp. Brain Res. 139: 359–371.

    Article  CAS  PubMed  Google Scholar 

  • Malpeli JG (1983) Activity of cells in area 17 of the cat in absence of input from layer A of lateral geniculate nucleus. J. Neurophysi. 49: 595–610.

    CAS  PubMed  Google Scholar 

  • Malpeli JG, Lee C, Schwark HD (1986) Cat area 17. I. Pattern of thalamic control of cortical layers. J. Neurophysi. 56: 1062–1073.

    CAS  PubMed  Google Scholar 

  • Martin KAC, Whitteridge D (1984) Form, function and intracortical projections of spiny neurones in the striate visual cortex of the cat. J. Physiol. (London) 353: 463–504.

    CAS  Google Scholar 

  • Martinez LM, Alonso JM (2001) Construction of complex receptive fileds in cat primary visual cortex. Neuron. 32: 515–525.

    Article  CAS  PubMed  Google Scholar 

  • Martinez LM, Alonso JM (2003) Complex receptive fields in primary visual cortex. The Neuroscientist 9: 317–331.

    Article  PubMed  Google Scholar 

  • Mechler F, Ringach DL (2002) On the classification of simple and complex cells. Vision Res. 42: 1017–1033.

    Article  PubMed  Google Scholar 

  • Miller KD (1996) Synaptic Economics: Competition and Cooperation in Synaptic Plasticity. Neuron 17: 367–370.

    Article  Google Scholar 

  • Miller KD, MacKay D (1994) The role of constraints in hebbian learning. Neural. Computation. 6: 100–126.

    Google Scholar 

  • Movshon J, Thompson I, Tolhurst D (1978a) Receptive field organization of complex cells in cat's striate cortex. J. Physiol. (London) 283: 79–99.

    CAS  Google Scholar 

  • Movshon J, Thompson I, Tolhurst D (1978b) Spatial summation in the receptive fields of simple cells in the cat's striate cortex. J. Physiol. (London) 283: 53–77.

    CAS  Google Scholar 

  • Pettigrew JD, Nikara T, Bishop PO (1968) Responses to moving slits by single units in cat striate cortex. Exp. Brain Res. 6: 373–390.

    CAS  PubMed  Google Scholar 

  • Priebe NJ, Mechler F, Carandini M, Ferster D (2004) The contribution of spike threshold to the dichotomy of cortical simple and complex cells. Nature neurosci. 7: 1113–1122.

    Article  CAS  PubMed  Google Scholar 

  • Ringach DL, Shapley R, Hawken MJ (2002) Orientation selectivity in macaque V1: Diversity and laminar dependence. J. Neurosci. 22: 5639–5651.

    CAS  PubMed  Google Scholar 

  • Schiller PH, Finlay BL, Volman SF (1976a) Quantitative studies of single-cell properties in monkey striate cortex. I. Spatiotemporal organization of receptive fields. J. Neurophysi. 39: 1288–1319.

    CAS  Google Scholar 

  • Schiller PH, Finlay BL, Volman SF (1976b) Quantitative studies of single-cell properties in monkey striate cortex. II. Orientation specificity and ocular dominance. J. Neurophysi. 39: 1320–1333.

    CAS  Google Scholar 

  • Schumer RA, Movshon JA (1984) Length summation in simple cells of cat striate cortex. Vision Res. 24: 565–571.

    CAS  PubMed  Google Scholar 

  • Skottun BC, De Valois RL, Grosof DH, Movshon J, Albrecht DG, Bonds AB (1991) Classifying simple and complex cells on the basis of response modulation. Vision Res. 31: 1079–1086.

    CAS  PubMed  Google Scholar 

  • Somers DC, Nelson SB, Sur M (1995) An emergent model of orientation selectivity in cat visual cortical simple cells. J. Neurosci. 15: 5448–5465.

    CAS  PubMed  Google Scholar 

  • Tanaka K (1983) Cross-correlation analysis of genuculostriate neuronal relationships in cats. J. Neurophysi. 49: 1303–1318.

    CAS  PubMed  Google Scholar 

  • Tao L, Shelley M, McLaughlin D, Shapley R (2004) An egalitarian network model for the emergence of simple and complex cells in visual cortex. Proc. Natl. Acad. Sci. USA 101: 366–371.

    CAS  PubMed  Google Scholar 

  • Treves A (1993) Mean-field analysis of neuronal spike dynamics. Network 4: 259–284.

    Article  Google Scholar 

  • Troyer TW, Krukowski AE, Priebe NJ, Miller KD (1998) Contrast-invariant orientation tuning in cat visual cortex: Thalamocortical input tuning and correlation-based intracortical connectivity. J. Neurosci. 18: 5908–5927.

    CAS  PubMed  Google Scholar 

  • Ursino M, La Cara GE (2004) Comparison of different models of orientation selectivity based on distinct intracortical inhibition rules. Vision Res. 44: 1641–1658.

    Article  PubMed  Google Scholar 

  • Virsu V, Hari R (1996) Cortical magnification, scale invariance and visual ecology. Vision Res. 36: 2971–2977.

    Article  CAS  PubMed  Google Scholar 

  • Zipser K, Lamme VA, Sciller PH (1996) Contextual modulation in primary visual cortex. J. Neurosci. 16: 7376–7389.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauro Ursino.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ursino, M., La Cara, GE. Dependence of Visual Cell Properties on Intracortical Synapses Among Hypercolumns: Analysis by a Computer Model. J Comput Neurosci 19, 291–310 (2005). https://doi.org/10.1007/s10827-005-2491-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-005-2491-4

Keywords

Navigation