Skip to main content
Log in

Simulation of high-frequency sinusoidal electrical block of mammalian myelinated axons

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

High frequency alternating current (HFAC) sinusoidal waveforms can block conduction in mammalian peripheral nerves. A mammalian axon model was used to simulate the response of nerves to HFAC conduction block. Sinusoidal waveforms from 1  to 40 kHz were delivered to eight simulated axon diameters ranging from 7.3  to 16 μm. Conduction block was obtained between 3  to 40 kHz. The minimum peak to peak current at which block was obtained, defined as the block threshold, increased with increasing frequency. Block threshold varied inversely with axon diameter. Upon initiation, the HFAC waveform produced one or more action potentials. These simulation results closely parallel previous experimental results of high frequency motor block of the rat sciatic and cat pudendal nerve. During HFAC block, the axons showed a dynamic steady state depolarization of multiple nodes, strongly suggesting a depolarization mechanism for HFAC conduction block.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Bhadra N, Kilgore KL (2004) Direct current electrical conduction block of peripheral nerve. IEEE Trans. Neural. Syst. Rehabil. Eng. 12: 313–324.

    Article  PubMed  Google Scholar 

  • Bhadra N, Kilgore KL (2005) High-frequency electrical conduction block of mammalian peripheral motor nerve. Muscle Nerve 32: 782–790.

    Article  PubMed  Google Scholar 

  • Bhadra N, Bhadra N, Kilgore K, Gustafson KJ (2006) High frequency electrical conduction block of the pudendal nerve. J. Neural. Eng. 3: 180–187.

    Article  PubMed  Google Scholar 

  • Bowman BR, McNeal DR (1986) Response of single alpha motoneurons to high-frequency pulse trains. Firing behavior and conduction block phenomenon. Appl. Neurophysiol. 49: 121–138.

    Article  PubMed  CAS  Google Scholar 

  • Forbes A, Rice LH (1929) Quantitative studies of the nerve impulse IV. Fatigue of the peripheral nerve. Am. J. Physiol. 90: 119– 145.

    Google Scholar 

  • Grill WM, Mortimer JT (1997) Inversion of the current-distance relationship by transient depolarization. IEEE Trans. Biomed. Eng. 44: 1–9.

    Article  PubMed  CAS  Google Scholar 

  • Hines ML, Carnevale NT (1997) The NEURON simulation environment. Neural. Comput. 9: 1179–1209.

    Article  PubMed  CAS  Google Scholar 

  • Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117: 500–544.

    PubMed  CAS  Google Scholar 

  • Kilgore KL, Bhadra N (2004) Nerve conduction block utilising high-frequency alternating current. Med. Biol. Eng. Comput. 42: 394–406.

    Article  PubMed  CAS  Google Scholar 

  • Krauthamer V, Crosheck T (2002) Effects of high-rate electrical stimulation upon firing in modelled and real neurons. Med. Biol. Eng. Comput. 40: 360–366.

    Article  PubMed  CAS  Google Scholar 

  • McCreery DB, Agnew WF, Yuen TG, Bullara L (1990) Charge density and charge per phase as cofactors in neural injury induced by electrical stimulation. IEEE Trans. Biomed. Eng. 37: 996– 1001.

    Article  PubMed  CAS  Google Scholar 

  • McIntyre CC, Richardson AG, Grill WM (2002) Modeling the excitability of mammalian nerve fibers: influence of afterpotentials on the recovery cycle. J. Neurophysiol. 87: 995–1006.

    PubMed  Google Scholar 

  • Mortimer JT (1981) Motor prostheses. American Physiology Society, Bethesda, MD.

    Google Scholar 

  • Ranck JB Jr (1975) Which elements are excited in electrical stimulation of mammalian central nervous system: a review. Brain Res. 98: 417–440.

    Article  PubMed  Google Scholar 

  • Rattay F (1990) Electrical Nerve Stimulation. Springer-Verlag, Vienna, Austria.

    Google Scholar 

  • Rattay F (1990) Electrical Nerve Stimulation; Theory, experiments and applications. Springer-Verlag, New York.

    Google Scholar 

  • Richardson AG, McIntyre CC, Grill WM (2000) Modelling the effects of electric fields on nerve fibres: influence of the myelin sheath. Med. Biol. Eng. Comput. 38: 438–446.

    Article  PubMed  CAS  Google Scholar 

  • Sassen M, Zimmermann M (1973) Differential blocking of myelinated nerve fibres by transient depolarization. Pflugers. Arch. 341: 179–195.

    Article  PubMed  CAS  Google Scholar 

  • Sawan M, Hassouna MM, Li JS, Duval F, Elhilali MM (1996) Stimulator design and subsequent stimulation parameter optimization for controlling micturition and reducing urethral resistance. IEEE Trans. Rehabil. Eng. 4: 39–46.

    Article  PubMed  CAS  Google Scholar 

  • Schwarz JR, Reid G, Bostock H (1995) Action potentials and membrane currents in the human node of Ranvier. Pflugers. Arch. 430(2): 283–292.

    Article  PubMed  CAS  Google Scholar 

  • Solomonow M, Eldred E, Lyman J, Foster J (1983) Control of muscle contractile force through indirect high-frequency stimulation. Am. J. Phys. Med. 62: 71–82.

    PubMed  CAS  Google Scholar 

  • Tai C, Roppolo JR, de Groat WC (2005a) Response of external urethral sphincter to high frequency biphasic electrical stimulation of pudendal nerve. J. Urol. 174(2): 782–786.

    Article  PubMed  Google Scholar 

  • Tai C, de Groat WC, Roppolo JR (2005b) Simulation analysis of conduction block in unmyelinated axons induced by high-frequency biphasic electrical currents. IEEE Trans. Biomed. Eng. 52: 1323–1332.

    Article  PubMed  Google Scholar 

  • Tai C, de Groat WC, Roppolo JR (2005c) Simulation of nerve block by high-frequency sinusoidal electrical current based on the Hodgkin-Huxley model. IEEE Trans. Neural. Syst. Rehabil. Eng. 13: 415–422.

    Article  PubMed  Google Scholar 

  • Tanner JA (1962) Reversible blocking of nerve conduction by alternating current excitation. Nature 195: 712–713.

    Article  PubMed  CAS  Google Scholar 

  • Warman EN, Grill WM, Durand D (1992) Modeling the effects of electric fields on nerve fibers: determination of excitation thresholds. IEEE Trans. Biomed. Eng. 39: 1244–1254.

    Article  PubMed  CAS  Google Scholar 

  • Williamson RP, Andrews BJ (2005) Localized electrical nerve blocking. IEEE Trans. Biomed. Eng. 52: 362–370.

    Article  PubMed  Google Scholar 

  • Woo MY, Campbell B (1964) Asynchronous firing and block of peripheral nerve conduction by 20 Kc alternating current. Bull. Los Angel Neuro. Soc. 29: 87–94.

    PubMed  CAS  Google Scholar 

  • Zimmermann M (1968) Selective activation of C-fibers. Pflugers. Arch. Gesamte. Physiol. Menschen. Tier. 301: 329–333.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institute of Health (NIH) Grant R01-EB-002091 and the State of Ohio Biomedical Research and Technology Transfer Partnership Award BRTT 03-0005. We thank Dr. Cameron C. McIntyre for advice and Angelique Johnson and Alan Barnes for help with the nerve modeling software.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niloy Bhadra.

Additional information

Action Editor: Karen Sigvardt

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhadra, N., Lahowetz, E.A., Foldes, S.T. et al. Simulation of high-frequency sinusoidal electrical block of mammalian myelinated axons. J Comput Neurosci 22, 313–326 (2007). https://doi.org/10.1007/s10827-006-0015-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-006-0015-5

Keywords

Navigation