Skip to main content
Log in

A neuronal network for the logic of Limax learning

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

We construct a neuronal network to model the logic of associative conditioning as revealed in experimental results using the terrestrial mollusk Limax maximus. We show, in particular, how blocking to a previously conditioned stimulus in the presence of the unconditional stimulus, can emerge as a dynamical property of the network. We also propose experiments to test the new model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Antzoulatos EG, Byrne JH (2004) Learning insights transmitted by glutamate. Trends Neurosci 27(9): 555–560.

    Google Scholar 

  • Baimoukhametova DV, Hewitt SA, Sank CA, Bains JS (2004) Dopamine modulates use-dependent plasticity of inhibitory synapses. J. Neurosci. 24(22): 5162–5171.

    Google Scholar 

  • Balaban PM (2002) Cellular mechanisms of behavioral plasticity in terrestrial snail. Neurosci. Biobehav. Rev. 26(5): 597–630.

    Google Scholar 

  • Balaban PM, Korshunova TA, Bravarenko NI (2004) Postsynaptic calcium contributes to reinforcement in a three-neuron network exhibiting associative plasticity. Eur. J. Neurosci. 19(2): 227–233.

    Google Scholar 

  • Brembs B, Baxter DA, Byrne JH (2004) Extending in vitro conditioning in Aplysia to analyze operant and classical processes in the same preparation. Learn Mem. 11(4): 412–420.

    Google Scholar 

  • Brembs B, Heisenberg M (2001) Conditioning with compound stimuli in Drosophila melanogaster in the flight simulator. J. Exp. Biol. 204(Pt 16): 2849–2859.

    Google Scholar 

  • Buonomano DV, Baxter DA, Byrne JH (1990) Small networks of empirically derived adaptive elements simulate some higher-order features of classical conditioning. Neural Networks 3: 507–523.

    Google Scholar 

  • Chang JJ, Gelperin A (1980) Rapid taste-aversion learning by an isolated molluscan central nervous system. Proc. Natl. Acad. Sci. USA 77(10): 6204–6206.

    Google Scholar 

  • Crow T (2004) Pavlovian conditioning of Hermissenda: Current cellular, molecular, and circuit perspectives. Learn Mem. 11(3): 229–238.

    Google Scholar 

  • Delaney K, Gelperin A (1990a) Cerebral interneurons controlling fictive feeding in Limax maximus. I. Anatomy and criteria for re-identification. J. Comp. Physiol. A 166: 297–310.

    Google Scholar 

  • Delaney K, Gelperin A (1990b) Cerebral interneurons controlling fictive feeding in Limax maximus. II. Initiation and modulation of fictive feeding. J. Comp. Physiol. A 166: 311–326.

    Google Scholar 

  • Delaney K, Gelperin A (1990c) Cerebral interneurons controlling fictive feeding in Limax maximus. III. Integration of sensory inputs. J. Comp. Physiol. A 166: 327–343.

    Google Scholar 

  • Ermentrout B (2002) Simulating, analyzing, and animating dynamical systems, volume 14 of Software, Environments, and Tools. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA. A guide to XPPAUT for researchers and students.

  • Fanselow MS (1998) Pavlovian conditioning, negative feedback, and blocking: Mechanisms that regulate association formation. Neuron 20(4): 625–627.

    Google Scholar 

  • Fanselow MS, Poulos AM (2005) The neuroscience of mammalian associative learning. Annu. Rev. Psychol. 56: 207–234.

    Google Scholar 

  • Farley J, Jin I, Huang H, Kim J-I (2004) Chemosensory conditioning in molluscs: II. A critical review. Learn Behav. 32(3): 277–288.

    Google Scholar 

  • Fulton D, Kemenes I, Andrew RJ, Benjamin PR (2005) A single time-window for protein synthesis-dependent long-term memory formation after one-trial appetitive conditioning. Eur. J. Neurosci. 21(5): 1347–1358.

    Google Scholar 

  • Gelperin A (1981) Synaptic modulation by identified serotonergic neurons. In Jacobs B, Gelperin A (eds.), Serotonin Neurotransmission and Behavior, MIT Press, Cambridge, MA, pp. 288–301.

  • Gelperin A (1999) Oscillatory dynamics and information processing in olfactory systems. J. Exp. Biol. 202 (Pt 14): 1855–1864.

    Google Scholar 

  • Gelperin A, Hopfield JJ, Tank DW (1986) The logic of Limax learning. In Selverston AI (ed.), Model Neural Networks and Behavior. Plenum Press, New York, pp. 237–261.

  • Gelperin A, Tank DW, Tesauro G (1989) Olfactory processing and associative memory. In Byrne JW, Berry WO (eds.), Neural Models of Plasticity. Academic Press, New York, pp. 133–159.

  • Gelperin A (2006) Olfactory computations and network oscillations. J Neurosci. 26(6): 1663–1668.

    Google Scholar 

  • Gluck MA, Thompson RF (1987). Modeling the neural substrates of associative learning and memory: A computational approach. Psychol. Rev. 94(2): 176–191.

    Google Scholar 

  • Goel P, Röbenack K (2005) Observing the input current in neurons. Manuscript submitted.

  • Guerrieri F, Lachnit H, Gerber B, Giurfa M (2005) Olfactory blocking and odorant similarity in the honeybee. Learn Mem. 12(2): 86–95.

    Google Scholar 

  • Hawkins RD (1989) A biologically based computational model for several simple forms of learning. In Hawkins RD, Bower GH (eds.), Computational Models of Learning in Simple Neural Systems. Academic Press, New York, pp. 65–108.

  • Hopfield JF, Gelperin A (1989) Differential conditioning to a compound stimulus and its components in the terrestrial mollusc Limax maximus. Behav. Neurosci. 103: 274–293.

    Google Scholar 

  • Hosler JS, Smith BH (2000) Blocking and the detection of odor components in blends. J. Exp. Biol. 203(Pt 18): 2797–2806.

    Google Scholar 

  • Inoue T, Inokuma Y, Watanabe S, Kirino Y (2004) In vitro study of odor-evoked behavior in a terrestrial mollusk. J. Neurophysiol. 91(1): 372–381.

    Google Scholar 

  • Jones D, Gonzalez-Lima F (2001) Mapping Pavlovian conditioning effects on the brain: Blocking, contiguity, and excitatory effects. J. Neurophysiol. 86(2): 809–823.

    Google Scholar 

  • Kamin LJ (1969) Predictability, surprise, attention and conditioning. In Campbell BA, Church RM (eds.), Punishment and– Aversive Behavior. Appleton-Century-Crofts, New York, pp. 279–296.

  • Kemenes G, Staras K, Benjamin PR (1997) In vitro appetitive classical conditioning of the feeding response in the pond snail Lymnaea stagnalis. J. Neurophysiol. 78(5): 2351–2362.

    Google Scholar 

  • Kirino Y, Inoue T, Watanabe S (2005). Behavioral determination of odor preference is coded by the oscillation frequency in a collective oscillating network of a terrestrial mollusk. Chem. Senses 30(Suppl 1): i154–i155.

    Google Scholar 

  • Korneev SA, Straub V, Kemenes I, Korneeva EI, Ott SR, Benjamin PR, O'Shea M (2005) Timed and targeted differential regulation of nitric oxide synthase (NOS) and anti-NOS genes by reward conditioning leading to long-term memory formation. J. Neurosci. 25(5): 1188–1192.

    Google Scholar 

  • Lukowiak K, Sahley C (1981) The in vitro classical conditioning of a gill withdrawal reflex in Aplysia: Neural correlates and possible neural mechanisms. Science 212: 1516–1518.

    Google Scholar 

  • Marinesco S, Kolkman KE, Carew TJ (2004a) Serotonergic modulation in Aplysia. I. Distributed serotonergic network persistently activated by sensitizing stimuli. J. Neurophysiol. 92(4): 2468–2486.

    Google Scholar 

  • Marinesco S, Wickremasinghe N, Kolkman KE, Carew TJ (2004b) Serotonergic modulation in Aplysia. II. Cellular and behavioral consequences of increased serotonergic tone. J. Neurophysiol. 92(4): 2487–2496.

    Google Scholar 

  • McComb C, Rosenegger D, Varshney N, Kwok HY, Lukowiak K (2005) Operant conditioning of an in vitro CNS-pneumostome preparation of Lymnaea. Neurobiol. Learn Mem. 84(1): 9–24.

    Google Scholar 

  • Phares GA, Byrne JH (2005) Analysis of 5-HT-induced short-term facilitation at Aplysia sensorimotor synapse during bursts: Increased synaptic gain that does not require ERK activation. J. Neurophysiol. 94(1): 871–877.

    Google Scholar 

  • Pittenger C, Kandel ER (2003) In search of general mechanisms for long-lasting plasticity: Aplysia and the hippocampus. Philos Trans. R Soc. Lond. B Biol. Sci. 358(1432): 757–763.

    Google Scholar 

  • Reyes FD, Mozzachiodi R, Baxter DA, Byrne JH (2005) Reinforcement in an in vitro analog of appetitive classical conditioning of feeding behavior in Aplysia: Blockade by a dopamine antagonist. Learn Mem. 12(3):216–220.

    Google Scholar 

  • Roberts AC, Glanzman DL (2003) Learning in Aplysia: Looking at synaptic plasticity from both sides. Trends Neurosci. 26(12): 662–670.

    Google Scholar 

  • Sahley C, Gelperin A, Rudy JW (1981a) One-trial associative learning modifies food odor preferences of a terrestrial mollusc. Proc. Natl. Acad. Sci. 78: 640–642.

    Google Scholar 

  • Sahley C, Rudy JW, Gelperin A (1981b) An analysis of associative learning in a terrestrial mollusc: Higher-order conditioning, blocking and a transient US pre-exposure effect. J. Comp. Physiol. A 144: 1–8.

    Google Scholar 

  • Sahley CL, Martin KA, Gelperin A (1990) Analysis of associative learning in the terrestrial mollusc Limax maximus. II. Appetitive learning. J. Comp. Physiol. [A] 167(3): 339–345.

    Google Scholar 

  • Sahley CL, Martin KA, Gelperin A (1992) Odors can induce feeding motor responses in the terrestrial mollusc Limax maximus. Behav. Neurosci. 106(3): 563–568.

    Google Scholar 

  • Sakura M, Kabetani M, Watanabe S, Kirino Y (2004) Impairment of olfactory discrimination by blockade of nitric oxide activity in the terrestrial slug Limax valentianus. Neurosci. Lett. 370(2/3): 257–261.

    Google Scholar 

  • Sangha S, Scheibenstock A, Martens K, Varshney N, Cooke R, Lukowiak K (2005) Impairing forgetting by preventing new learning and memory. Behav. Neurosci. 119(3): 787–796.

    Google Scholar 

  • Sekiguchi T, Suzuki H, Yamada A, Kimura T (1999) Aversive conditioning to a compound odor stimulus and– its components in a terrestrial mollusc. Zool Sci. 16: 879–883.

    Google Scholar 

  • Sekiguchi T, Suzuki H, Yamada A, Mizukami A (1994) Cooling-induced retrograde amnesia reflexes Pavlovian conditioning associations in Limax flavus. Neurosci. Res. 18(4):267–275.

    Google Scholar 

  • Sekiguchi T, Yamada A, Suzuki H (1997) Reactivation-dependent changes in memory states in the terrestrial slug Limax flavus. Learn Mem. 4(4):356–364.

    Google Scholar 

  • Sherff CM, Carew TJ (2004) Parallel somatic and synaptic processing in the induction of intermediate-term and long-term synaptic facilitation in Aplysia. Proc. Natl. Acad. Sci. USA 101(19): 7463–7468.

    Google Scholar 

  • Shimozono S, Watanabe S, Inoue T, Kirino Y (2001) Identification and characterization of an output neuron from the oscillatory molluscan olfactory network. Brain Res. 921(1/2): 98–105.

    Google Scholar 

  • Sutton RS, Barto AG (1990) Time-derivative models of Pavlovian reinforcement. In Gabriel M, Moore JW (eds.), Learning and Computational Neuroscience. MIT Press, Cambridge, MA, pp. 497–534.

  • Teyke T, Gelperin A (1999) Olfactory oscillations augment odor discrimination not odor identification by Limax CNS. Neuroreport 10(5): 1061–1068.

    Google Scholar 

  • Teyke T, Wang JW, Gelperin A (2000) Lateralized memory storage and crossed inhibition during odor processing by Limax. J. Comp. Physiol. [A] 186(3): 269–278.

    Google Scholar 

  • Udo H, Jin I, Kim J-H, Li H-L, Youn T, Hawkins RD, Kandel ER, Bailey CH (2005) Serotonin-induced regulation of the actin network for learning-related synaptic growth requires Cdc42, N-WASP, and PAK in Aplysia sensory neurons. Neuron 45(6): 887–901.

    Google Scholar 

  • Vogel EH, Castro ME, Saavedra MA (2004) Quantitative models of Pavlovian conditioning. Brain Res. Bull. 63(3): 173–202.

    Google Scholar 

  • Wieland SJ, Gelperin A (1983) Dopamine elicits feeding motor program in Limax maximus. J. Neurosci. 3(9): 1735–1745.

    Google Scholar 

  • Yamane T, Oestreicher AB, Gelperin A (1989) Serotonin-stimulated biochemical events in the procerebrum of Limax. Cell Mol. Neurobiol. 9(4): 447–459.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Action Editor: G. Bard Ermentrout

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goel, P., Gelperin, A. A neuronal network for the logic of Limax learning. J Comput Neurosci 21, 259–270 (2006). https://doi.org/10.1007/s10827-006-8097-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-006-8097-7

Keywords

Navigation