Skip to main content
Log in

Partial phase synchronization of neural populations due to random Poisson inputs

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

We show that populations of identical uncoupled neurons exhibit partial phase synchronization when stimulated with independent, random unidirectional current spikes with interspike time intervals drawn from a Poisson distribution. We characterize this partial synchronization using the phase distribution of the population, and consider analytical approximations and numerical simulations of phase-reduced models and the corresponding conductance-based models of typical Type I (Hindmarsh–Rose) and Type II (Hodgkin–Huxley) neurons, showing quantitatively how the extent of the partial phase synchronization depends on the magnitude and mean interspike frequency of the stimulus. Furthermore, we present several simple examples that disprove the notion that phase synchrony must be strongly related to spike synchrony. Instead, the importance of partial phase synchrony is shown to lie in its influence on the response of the population to stimulation, which we illustrate using first spike time histograms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Brown, E., Moehlis, J., & Holmes, P. (2004a). On the phase reduction and response dynamics of neural oscillator populations. Neural Computation, 16, 673–715.

    Article  PubMed  Google Scholar 

  • Brown, E., Moehlis, J., Holmes, P., Clayton, E., Rajkowski, J., & Aston-Jones, G. (2004b). The influence of spike rate and stimulus duration on noradrenergic neurons. Journal of Computational Neuroscience, 17, 13–29.

    Article  PubMed  Google Scholar 

  • Coffey, W. T., Kalmykov, Y. P., & Waldron, J. T. (2004). The Langevin Equation: With applications to stochaistic problems in physics, chemistry, and electrical engineering. Singapore: World Scientific.

    Google Scholar 

  • Connor, J. A., Walter, D., & McKown, R. (1977). Neural repetitive firing: Modifications of the Hodgkin–Huxley axon suggested by experimental results from crustacean axons. Biophysical Journal, 18, 81–102.

    PubMed  CAS  Google Scholar 

  • Elble, R. J., & Koller, W. C. (1990). Tremor. Baltimore: Johns Hopkins University Press.

    Google Scholar 

  • Ermentrout, G. B. (1996). Type I membranes, phase resetting curves, and synchrony. Neural Computation, 8, 979–1001.

    Article  PubMed  CAS  Google Scholar 

  • Ermentrout, G. B. (2002). Simulating, analyzing, and animating dynamical systems: A guide to XPPAUT for researchers and students. Philadelphia: SIAM

    Google Scholar 

  • Friedrich, R. W., & Stopfer, M. (2001). Recent dynamics in olfactory population coding. Current Opinion in Neurobiology, 11, 468–474.

    Article  PubMed  CAS  Google Scholar 

  • Galán, R. F., Fourcaud-Trocmé N., Ermentrout, G. B., & Urban, N. N. (2006). Correlation-induced synchronization of oscillations in olfactory bulb neurons. Journal of Neuroscience, 26(14), 3646–3655.

    Article  PubMed  CAS  Google Scholar 

  • Goldobin, D. S., & Pikovsky, A. (2005a). Synchronization and desynchronization of self-sustained oscillators by common noise. Physical Review E, 71, 045201.

    Article  CAS  Google Scholar 

  • Goldobin, D. S., & Pikovsky, A. (2005b). Synchronization of self-sustained oscillators by common white noise. Physica A, 351, 126–132.

    Article  Google Scholar 

  • Gray, C. M., König, P., Engel, A. K., & Singer, W. (1989). Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature, 338, 334–337.

    Article  PubMed  CAS  Google Scholar 

  • Guckenheimer, J. (1975). Isochrons and phaseless sets. Journal of Mathematical Biology, 1, 259–273.

    Article  Google Scholar 

  • Gutkin, B. S., Ermentrout, G. B., & Reyes, A. D. (2005). Phase response curves give the responses of neurons to transient inputs. Journal of Neurophysiology, 94, 1623–1635.

    Article  PubMed  Google Scholar 

  • Hodgkin, A. L., & Huxley, A. F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. Journal of Physiology, 117, 500–544.

    PubMed  CAS  Google Scholar 

  • Josić, K., Shea-Brown, E. T., & Moehlis, J. (2006). Isochron. Scholarpedia, 2509.

  • Klimesch, W. (1996). Memory processes, brain oscillations and EEG synchronization. International Journal of Psychophysiology, 24, 61–100.

    Article  PubMed  CAS  Google Scholar 

  • Kopell, N. (2000). We got rhythm: Dynamical systems of the nervous system. Notices of the AMS, 47(1), 6–16.

    Google Scholar 

  • Kuramoto, Y. (1984). Chemical oscillations, waves, and turbulence. Berlin: Springer

    Google Scholar 

  • Mainen, Z. F., & Sejnowski, T. J. (1995). Reliability of spike timing in neocortical neurons. Science, 268, 1503–1506.

    Article  PubMed  CAS  Google Scholar 

  • Nakao, H., Arai, K., Nagai, K., Tsubo, Y., & Kuramoto, Y. (2005). Synchrony of limit cycle oscillators induced by random external impulses. Physical Review E, 72, 026220.

    Article  CAS  Google Scholar 

  • Pare, D., Curro’Dossi, R., & Steriade, M. (1990). Neuronal basis of the Parkinsonian resting tremor: A hypothesis and its implications for treatment. Neuroscience, 35, 217–226.

    Article  PubMed  CAS  Google Scholar 

  • Rinzel, J., & Ermentrout, G. B. (1998). Analysis of neural excitability and oscillations. In: C. Koch & I. Segev, (Eds.), Methods in neuronal modeling (pp. 251–291). MIT Press.

  • Rinzel, J., & Miller, R. N. (1980). Numerical calculations of stable and unstable periodic solutions to the Hodgkin–Huxley equations. Mathematical Biosciences, 49, 27–59.

    Article  Google Scholar 

  • Ritt, J. (2003). Evaluation of entrainment of a nonlinear neural oscillator to white noise. Physical Review E, 68(4), 041915 (Oct).

    Article  CAS  Google Scholar 

  • Rose, R., & Hindmarsh, J. (1989). The assembly of ionic currents in a thalamic neuron I. The three-dimensional model. Proceedings of the Royal Society of London. Series B, 237, 267–288.

    Article  CAS  Google Scholar 

  • Singer, W. (1993). Synchronization of cortical activity and its putative role in information processing and learning. Annual Review of Physiology, 55, 349–374.

    Article  PubMed  CAS  Google Scholar 

  • Softky, W. R., & Koch, C. (1993). The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPs. Journal of Neuroscience, 13(1), 334–350.

    PubMed  CAS  Google Scholar 

  • Stent, G. S. (1973). A physiological mechanism for Hebb’s postulate of learning. Proceedings of the National Academy of Sciences, 70, 997–1001.

    Article  CAS  Google Scholar 

  • Stevens, C. F., & Zador, A. M. (1998). Input synchrony and the irregular firing of cortical neurons. Nature Neuroscience, 1, 210–217.

    Article  PubMed  CAS  Google Scholar 

  • Tass, P. A. (2000). Effective desynchronization by means of double-pulse phase resetting. Europhysics Letters, 53, 15–21.

    Article  Google Scholar 

  • Teramae, J., & Tanaka, D. (2004). Robustness of the noise-induced phase synchronization in a general class of limit cycle oscillators. Physical Review Letters, 93(20), 204103.

    Article  PubMed  CAS  Google Scholar 

  • Traub, R. D., Miles, R., & Wong, R. K. S. (1989). Model of the origin of rhythmic population oscillations in the hippocampal slice. Science, 243, 1319–1325.

    Article  PubMed  CAS  Google Scholar 

  • Usrey, W. M., & Reid, R. C. (1999). Synchronous activity in the visual system. Annual Review of Physiology, 61, 435–456.

    Article  PubMed  CAS  Google Scholar 

  • Winfree, A. (1974). Patterns of phase compromise in biological cycles. Journal of Mathematical Biology, 1, 73–95.

    Article  Google Scholar 

  • Winfree, A. (2001). The geometry of biological time (2nd ed.). New York: Springer.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation grant NSF-0547606 and a University of California Council on Research and Instructional Resources Faculty Research Grant. P.D. acknowledges an National Science Foundation IGERT Fellowship in Computational Science and Engineering. G.B. is partially supported by NIH Grant R01 GM078993. J.M. acknowledges an Alfred P. Sloan Research Fellowship in Mathematics. We thank the anonymous referees for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Per Danzl.

Additional information

Action Editor: G. Bard Ermentrout

Rights and permissions

Reprints and permissions

About this article

Cite this article

Danzl, P., Hansen, R., Bonnet, G. et al. Partial phase synchronization of neural populations due to random Poisson inputs. J Comput Neurosci 25, 141–157 (2008). https://doi.org/10.1007/s10827-007-0069-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-007-0069-z

Keywords

Navigation