Skip to main content
Log in

Multisensory integration in the superior colliculus: a neural network model

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Neurons in the superior colliculus (SC) are known to integrate stimuli of different modalities (e.g., visual and auditory) following specific properties. In this work, we present a mathematical model of the integrative response of SC neurons, in order to suggest a possible physiological mechanism underlying multisensory integration in SC. The model includes three distinct neural areas: two unimodal areas (auditory and visual) are devoted to a topological representation of external stimuli, and communicate via synaptic connections with a third downstream area (in the SC) responsible for multisensory integration. The present simulations show that the model, with a single set of parameters, can mimic various responses to different combinations of external stimuli including the inverse effectiveness, both in terms of multisensory enhancement and contrast, the existence of within- and cross-modality suppression between spatially disparate stimuli, a reduction of network settling time in response to cross-modal stimuli compared with individual stimuli. The model suggests that non-linearities in neural responses and synaptic (excitatory and inhibitory) connections can explain several aspects of multisensory integration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Amlot, R., Walken, R., Driver, J., & Spence, C. (2003). Multimodal visual–somatosensory integration in saccade generation. Neuropsychology, 41, 1–15.

    Article  Google Scholar 

  • Anastasio, T. J., & Patton, P. E. (2003). A two-stage unsupervised learning algorithm reproduces multisensory enhancement in a neural network model of the corticotectal system. Journal of Neuroscience, 23, 6713–6727.

    PubMed  CAS  Google Scholar 

  • Anastasio, T. J., Patton, P. E., & Belkacem-Boussaid, K. (2000). Using Bayes rule to model multisensory enhancement in the superior colliculus. Neural Computation, 12, 1165–1187.

    Article  PubMed  CAS  Google Scholar 

  • Bell, A. H., Corneil, B. D., Meredith, M. A., & Munoz, D. P. (2001). The influence of stimulus properties on multisensory processing in the awake primate superior colliculus. Canadian Journal of Experimental Psychology, 55, 123–132.

    PubMed  CAS  Google Scholar 

  • Ben-Yishai, R., Bar, O., & Sompolinsky, H. (1995). Theory of orientation tuning in visual cortex. Proceedings of the National Academy of Sciences of the United States of America, 92, 3844–3848.

    Article  PubMed  CAS  Google Scholar 

  • Bermant, R. I., & Welch, R. B. (1976). Effect of degree of separation of visual–auditory stimulus and eye position upon spatial interaction of vision and audition. Perceptual and Motor Skills, 43, 487–493.

    Google Scholar 

  • Edwards, S. B., Ginsburgh, C. L., Henkel, C. K., & Stein, B. E. (1979). Sources of subcortical projections to the superior colliculus in the Cat. Journal of Comparative Neurology, 184, 309–330.

    Article  PubMed  CAS  Google Scholar 

  • Frassinetti, F., Bolognini, N., & Ladavas, E. (2002). Enhancement of visual perception by crossmodal visuo-auditory interaction. Experimental Brain Research, 147, 332–343.

    Article  Google Scholar 

  • Frens, M. A., & Van Opstal, A. J. (1998). Visual-auditory interactions modulate saccade-related activity in monkey superior colliculus. Brain Research Bulletin, 46, 211–224.

    Article  PubMed  CAS  Google Scholar 

  • Frens, M. A., Van Opstal, A. J., & Van der Willigen, R. F. (1995). Spatial and temporal factors determine auditory–visual interactions in human saccadic eye movements. Perception & Psychophysics, 57, 802–816.

    CAS  Google Scholar 

  • Huerta, M. F., & Harting, J. K. (1984). The mammalian superior colliculus: studies of its morphology and connections. In H. Vanegas (Ed.), Comparative neurology of the optic tectum (pp. 687–773). New York: Plenum.

    Google Scholar 

  • Hughes, H. C., Reuter-Lorenz, P. A., Nozawa, G., & Fendrich, R. (1994). Visual–auditory interactions in sensorimotor processing: saccades versus manual responses. Journal of Experimental Psychology. Human Perception and Performance, 20, 131–153.

    Article  PubMed  CAS  Google Scholar 

  • Jiang, W., Jiang, H., & Stein, B. E. (2002). Two corticotectal areas facilitate multisensory orientation behavior. Journal of Cognitive Neuroscience, 14, 1240–1255.

    Article  PubMed  Google Scholar 

  • Jiang, W., & Stein, B. E. (2003). Cortex controls multisensory depression in superior colliculus. Journal of Neurophysiology, 90, 2123–2135.

    Article  PubMed  Google Scholar 

  • Jiang, W., Wallace, M. T., Jiang, H., Vaughan, J. W., & Stein, B. E. (2001). Two cortical areas mediate multisensory integration in superior colliculus neurons. Journal of Neurophysiology, 85, 506–522.

    PubMed  CAS  Google Scholar 

  • Kadunce, D. C., Vaughan, J. W., Wallace, M. T., Benedek, G., & Stein, B. E. (1997). Mechanisms of within- and cross-modality suppression in the superior colliculus. Journal of Neurophysiology, 78, 2834–2847.

    PubMed  CAS  Google Scholar 

  • Kadunce, D. C., Vaughan, J. W., Wallace, M. T., & Stein, B. E. (2001). The influence of visual and auditory receptive field organization on multisensory integration in the superior colliculus. Experimental Brain Research, 139, 303–310.

    Article  CAS  Google Scholar 

  • King, A. J., & Palmer, A. R. (1985). Integration of visual and auditory information in bimodal neurons in the Guinea pig superior colliculus. Experimental Brain Research, 60, 492–500.

    Article  CAS  Google Scholar 

  • Meredith, M. A., & Stein, B. E. (1986a). Spatial factors determine the activity of multisensory neurons in cat superior colliculus. Brain Research, 365, 350–354.

    Article  PubMed  CAS  Google Scholar 

  • Meredith, M. A., & Stein, B. E. (1986b). Visual, auditory, and somatosensory convergence on cells in superior colliculus results in multisensory integration. Journal of Neurophysiology, 56, 640–662.

    PubMed  CAS  Google Scholar 

  • Meredith, M. A., & Stein, B. E. (1996). Spatial determinants of multisensory integration in cat superior colliculus neurons. Journal of Neurophysiology, 75, 1843–1857.

    PubMed  CAS  Google Scholar 

  • Mize, R. R., Withworth, H., Nunes-Cardozo, B., & van der Want, J. (1994). Ultrastructural organization of GABA in the rabbit superior colliculus revealed by quantitative postembedding immunocytochemistry. Journal of Comparative Neurology, 341, 273–287.

    Article  PubMed  CAS  Google Scholar 

  • Patton, P. E., & Anastasio, T. J. (2003). Modelling cross-modal enhancement and modality-specific suppression in multisensory neurons. Neural Computation, 15, 783–810.

    Article  PubMed  Google Scholar 

  • Patton, P. E., Belkacem-Boussaid, K., & Anastasio, T. J. (2002). Multimodality in the superior colliculus: an information theoretic analysis. Brain Research, Cognitive Brain Research, 14, 10–19.

    Article  Google Scholar 

  • Peck, C. K. (1996). Visual–auditory integration in cat superior colliculus: Implications for neuronal control of the orienting response. Progress in Brain Research, 112, 167–177.

    Article  PubMed  CAS  Google Scholar 

  • Perrault Jr., T. J., Vaughan, J. W., Stein, B. E., & Wallace, M. T. (2003). Neuron-specific response characteristics predict the magnitude of multisensory integration. Journal of Neurophysiology, 90, 4022–4026.

    Article  PubMed  Google Scholar 

  • Perrault Jr., T. J., Vaughan, J. W., Stein, B. E., & Wallace, M. T. (2005). Superior colliculus neurons use distinct operational modes in the integration of multisensory stimuli. Journal of Neurophysiology, 93, 2575–2586.

    Article  PubMed  Google Scholar 

  • Perrott, D. R., Saberi, K., Brown, K., & Strybel, T. Z. (1990). Auditory psychomotor coordination and visual search performance. Perception & Psychophysics, 48, 214–226.

    CAS  Google Scholar 

  • Populin, L. C. (2005). Anesthetics change the excitation/inhibition balance that governs sensory processing in the cat superior colliculus. Journal of Neuroscience, 25, 5903–5914.

    Article  PubMed  CAS  Google Scholar 

  • Populin, L. C., & Yin, T. C. T. (2002). Bimodal interactions in the superior colliculus of the behaving cat. Journal of Neuroscience, 22, 2826–2834.

    PubMed  CAS  Google Scholar 

  • Schroger, E., & Widmann, A. (1998). Speeded responses to audiovisual signal changes result from bimodal integration. Psychophysiology, 35, 755–759.

    Article  PubMed  CAS  Google Scholar 

  • Sparks, D. L. (1986). Translation of sensory signals into commands for control of saccadic eye movements: Role of primate superior colliculus. Physiological Reviews, 66, 118–171.

    PubMed  CAS  Google Scholar 

  • Stanford, T. R., Quessy, S., & Stein, B. E. (2005). Evaluating the operations underlying multisensory integration in the cat superior colliculus. Journal of Neuroscience, 25, 6499–6508.

    Article  PubMed  CAS  Google Scholar 

  • Stein, B. E. (1998). Neural mechanisms for synthesizing sensory information and producing adaptive behaviors. Experimental Brain Research, 123, 124–135.

    Article  CAS  Google Scholar 

  • Stein, B. E., Huneycutt, W. S., & Meredith, M. A. (1988). Neurons and behavior: The same rules of multisensory integration apply. Brain Research, 448, 355–358.

    Article  PubMed  CAS  Google Scholar 

  • Stein, B. E., & Meredith, M. A. (1993). The merging of the senses. Cambridge, MA: MIT.

    Google Scholar 

  • Stein, B. E., Meredith, M. A., Huneycutt, W. S., & McDade, L. (1989). Behavioral indices of multisensory integration: Orientation to visual cues is affected by auditory stimuli. Journal of Cognitive Neuroscience, 1, 12–24.

    Article  Google Scholar 

  • Treves, A. (1993). Mean-field analysis of neuronal spike dynamics. Network, 4, 259–284.

    Article  Google Scholar 

  • Wallace, M. T., Meredith, M. A., & Stein, B. E. (1993). Converging influences from visual, auditory, and somatosensory cortices onto output neurons of the superior colliculus. Journal of Neurophysiology, 69, 1797–1809.

    PubMed  CAS  Google Scholar 

  • Wallace, M. T., Meredith, M. A., & Stein, B. E. (1998). Multisensory integration in the superior colliculus of the alert cat. Journal of Neurophysiology, 80, 1006–1010.

    PubMed  CAS  Google Scholar 

  • Wallace, M. T., Wilkinson, L. K., & Stein, B. E. (1996). Representation and integration of multiple sensory inputs in primate superior colliculus. Journal of Neurophysiology, 96, 1246–1266.

    Google Scholar 

  • Welch, R. B., & Warren, D. H. (1986). Intersensory interaction. In K. R. Boff, L. Kaufman, & J. P. Thomas (Eds.), Handbook of perception and human performance (pp. 1–36). New York: Wiley.

    Google Scholar 

  • Wilkinson, L. K., Meredith, M. A., & Stein, B. E. (1996). The role of anterior ectosylvian cortex in cross-modality orientation and approach behavior. Experimental Brain Research, 112, 1–10.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauro Ursino.

Additional information

Action Editor: Alessandro Treves

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ursino, M., Cuppini, C., Magosso, E. et al. Multisensory integration in the superior colliculus: a neural network model. J Comput Neurosci 26, 55–73 (2009). https://doi.org/10.1007/s10827-008-0096-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-008-0096-4

Keywords

Navigation