Skip to main content
Log in

Variability of bursting patterns in a neuron model in the presence of noise

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Spiking and bursting patterns of neurons are characterized by a high degree of variability. A single neuron can demonstrate endogenously various bursting patterns, changing in response to external disturbances due to synapses, or to intrinsic factors such as channel noise. We argue that in a model of the leech heart interneuron existing variations of bursting patterns are significantly enhanced by a small noise. In the absence of noise this model shows periodic bursting with fixed numbers of interspikes for most parameter values. As the parameter of activation kinetics of a slow potassium current is shifted to more hyperpolarized values of the membrane potential, the model undergoes a sequence of incremental spike adding transitions accumulating towards a periodic tonic spiking activity. Within a narrow parameter window around every spike adding transition, spike alteration of bursting is deterministically chaotic due to homoclinic bifurcations of a saddle periodic orbit. We have found that near these transitions the interneuron model becomes extremely sensitive to small random perturbations that cause a wide expansion and overlapping of the chaotic windows. The chaotic behavior is characterized by positive values of the largest Lyapunov exponent, and of the Shannon entropy of probability distribution of spike numbers per burst. The windows of chaotic dynamics resemble the Arnold tongues being plotted in the parameter plane, where the noise intensity serves as a second control parameter. We determine the critical noise intensities above which the interneuron model generates only irregular bursting within the overlapped windows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. The stable periodic orbit corresponds to tonic spiking.

References

  • Arnold, V. I., Afraimovich, V. S., Ilyashenko, Yu. S., & Shilnikov, L. P. (1994). Bifurcation theory. Dynamical systems. Encyclopaedia of mathematical sciences (Vol. V). New York: Springer.

    Google Scholar 

  • Bal, T., Nagy, F., & Moulins, M. (1988). The pyloric central pattern generator in crustacea: A set of conditional neural oscillators. Journal of Comparative Physiology A, 163(6), 715–727.

    Article  Google Scholar 

  • Belykh, V. N., Belykh, I. V., Colding-Jorgensen, M., & Mosekilde, E. (2000). Homoclinic bifurcations leading to bursting oscillations in cell models. The European Physical Journal E—Soft Matter, 3(3), 205–219.

    Article  CAS  Google Scholar 

  • Bertram, R., Butte, M. J., Kiemel, T., & Sherman, A. (1995). Topological and phenomenological classification of bursting oscillations. Bulletin of Mathematical Biology, 57(3), 413–439.

    CAS  Google Scholar 

  • Bulsara, A. R., Schieve, W. C., & Jacobs, E. W. (1990). Homoclinic chaos in systems perturbed by weak langevin noise. Physical Review A, 41(2), 668–681.

    Article  PubMed  Google Scholar 

  • Carelli, P. V., Reyes, M. B., Sartorelli, J. C., & Pinto, R. D. (2005). Whole cell stochastic model reproduces the irregularities found in the membrane potential of bursting neurons. Journal of Neurophysiology, 94(2), 1169–1179.

    Article  PubMed  Google Scholar 

  • Channell, P., Cymbalyuk, G., & Shilnikov, A. (2007a). Origin of bursting through homoclinic spike adding in a neuron model. Physical Review Letters, 98(13), 134101.

    Article  PubMed  Google Scholar 

  • Channell, P., Cymbalyuk, G., & Shilnikov, A. L. (2007b). Applications of the poincare mapping technique to analysis of neuronal dynamics. Neurocomputing, 70, 10–12.

    Google Scholar 

  • Chay, T. R. (1985). Chaos in a three-variable model of an excitable cell. Physica D, 16(2), 233–242.

    Article  Google Scholar 

  • Chow, C. C., & White, J. A. (1996). Spontaneous action potentials due to channel fluctuations. Biophysical Journal, 71(6), 3013–3021.

    Article  CAS  PubMed  Google Scholar 

  • Clewley, R., Soto-Trevino, C., & Nadim, F. (2009). Dominant ionic mechanisms explored in spiking and bursting using local low-dimensional reductions of a biophysically realistic model neuron. Journal of Computational Neuroscience, 26(1), 75–90.

    Article  PubMed  Google Scholar 

  • Cymbalyuk, G. S., & Calabrese, R. L. (2001). A model of slow plateau-like oscillations based upon the fast Na +  current in a window mode. Neurocomputing, 38, 159–166.

    Article  Google Scholar 

  • Cymbalyuk, G. S., & Shilnikov, A. L. (2005). Coexistence of tonic spiking oscillations in a leech neuron model. Journal of Computational Neuroscience, 18(3), 255–263.

    Article  PubMed  Google Scholar 

  • Cymbalyuk, G. S., Gaudry, Q., Masino, M. A., & Calabrese, R. L. (2002). Bursting in leech heart interneurons: cell-autonomous and network-based mechanisms. Journal of Neuroscience, 22(24), 10580–10592.

    CAS  PubMed  Google Scholar 

  • Deng, B., & Hines, G. (2002). Food chain chaos due to Shilnikov’s orbit. Chaos, 12(3), 533–538.

    Article  PubMed  Google Scholar 

  • Elson, R. C., Huerta, R., Abarbanel, H. D., Rabinovich, H. D., & Selverston, A. I. (1999). Dynamic control of irregular bursting in an identified neuron of an oscillatory circuit. Journal of Neurophysiology, 82(1), 115–122.

    CAS  PubMed  Google Scholar 

  • Elson, R. C., Selverston, A. I., Abarbanel, H. D. I., & Rabinovich, M. I. (2002). Dynamic control of irregular bursting in an identified neuron of an oscillatory circuit. Journal of Neurophysiology, 88, 1166–1182.

    PubMed  Google Scholar 

  • Fan, Y. S., & Holden, A. V. (1995). Bifurcations, burstings, chaos and crises in the Rose-Hindmarsh model for neuronal activity. Chaos, Solitons and Fractals, 3, 439–449.

    Article  Google Scholar 

  • Fenichel, F. (1979). Geometric singular perturbation theory for ordinary differential equations. Journal of Differential Equations, 31, 53–98.

    Article  Google Scholar 

  • Feudel, U., Neiman, A., Pei, X., Wojtenek, W., Braun, H., Huber, M., et al. (2000). Homoclinic bifurcation in a Hodgkin-Huxley model of thermally sensitive neurons. Chaos, 10(1), 231–239.

    Article  PubMed  Google Scholar 

  • Galan, R. F., Ermentrout, G. B., & Urban, N. N. (2008). Optimal time scale for spike-time reliability: Theory, simulations, and experiments. Journal of Neurophysiology, 99(1), 277–283.

    Article  PubMed  Google Scholar 

  • Gavrilov, N. K., & Shilnikov, L. P. (1972). On three-dimensional dynamical systems close to systems with a structurally unstable homoclinic curve. Mathematics of the USSR, Sbornik, 17(3), 467–485.

    Article  Google Scholar 

  • Goldobin, D. S., & Pikovsky, A. (2005). Synchronization and desynchronization of self-sustained oscillators by common noise. Physical Review E, 71, 045201.

    Article  Google Scholar 

  • Goldobin, D. S., & Pikovsky, A. (2006). Antireliability of noise-driven neurons. Physical Review E, 73, 061906.

    Article  Google Scholar 

  • Griffiths, R. E., & Pernarowski, M. C. (2006). Return map characterizations for a model of bursting with two slow variables. SIAM Journal on Applied Mathematics, 66(6), 1917–1948.

    Article  Google Scholar 

  • Gu, H., Yang, M., Li, L., Liu, Z., & Ren, W. (2002). Experimental observation of the stochastic bursting caused by coherence resonance in a neural pacemaker. NeuroReport, 13(13), 1657–1660.

    Article  PubMed  Google Scholar 

  • Guckenheimer, J. (1996). Towards a global theory of singularly perturbed systems. Progress in Nonlinear Differential Equations and Their Applications, 19, 214–225.

    Google Scholar 

  • Hayashi, H., & Ishizuka, S. (1995). Chaotic responses of the hippocampal CA3 region to a mossy fiber stimulation in vitro. Brain Research, 686(2), 194–206.

    Article  CAS  PubMed  Google Scholar 

  • Hill, A. A., Lu, J., Masino, M. A., Olsen, O. H., & Calabrese, R. L. (2001). A model of a segmental oscillator in the leech heartbeat neuronal network. Journal of Computational Neuroscience, 10(3), 281–302.

    Article  CAS  PubMed  Google Scholar 

  • Hodgkin, A. L., & Huxley, A. F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. Journal of Physiology, 117(4), 500–544.

    CAS  PubMed  Google Scholar 

  • Holden, A. V., & Fan, Y. S. (1992). From simple to simple bursting oscillatory behaviour via intermittent chaos in the Rose-Hindmarsh model for neuronal activity. Chaos, Solitons and Fractals, 2, 349–269.

    Article  Google Scholar 

  • Izhikevich, E. M. (2000). Neural excitability, spiking and bursting. International Journal of Bifurcation and Chaos, 10, 1171–1266.

    Article  Google Scholar 

  • Izhikevich, E. M. (2007). Dynamical systems in neuroscience. The geometry of excitability and bursting. Cambridge: MIT.

    Google Scholar 

  • Jaeger, L., & Kantz, H. (1997). Homoclinic tangencies and non-normal jacobians—effects of noise in nonhyperbolic chaotic systems. Physica D, 105(1–3), 79–96.

    Article  Google Scholar 

  • Jones, C. K. R. T., & Kopell, N. (1994). Tracking invariant-manifolds with differential forms in singularly perturbed systems. Journal of Differential Equations, 108(1), 64–88.

    Article  Google Scholar 

  • Kramer M., Traub, R. D., & Kopell, N. J. (2008) New dynamics in cerebellar purkinje cells: Torus canards. Physics Review Letters, 101, 068103.

    Article  Google Scholar 

  • Kopell, N. (1988). Toward a theory of modelling central pattern generators. In A. H., Cohen, S., Rossingol, & S., Grillner (Eds.), Neural control of rhythmic movements in vertebrates (pp. 1–20). New York: Wiley.

    Google Scholar 

  • Kuske, R., & Baer, S. M. (2002). Asymptotic analysis of noise sensitivity in a neuronal burster. Bulletin of Mathematical Biology, 64(3), 447–481.

    Article  CAS  PubMed  Google Scholar 

  • Mainen, Z. F., & Sejnowski, T. J. (1995). Reliability of spike timing in neocortical neurons. Science, 268(5216), 1503–1506.

    Article  CAS  PubMed  Google Scholar 

  • Manwani, A., & Koch, C. (1999). Detecting and estimating signals in noisy cable structure, I: Neuronal noise sources. Neural Computation, 11(8), 1797–1829.

    Article  CAS  PubMed  Google Scholar 

  • Marder, E., & Calabrese, R. L. (1996). Principles of rhythmic motor pattern generation. Physiological Reviews, 76(3), 687–717.

    CAS  PubMed  Google Scholar 

  • Medvedev, G. M. (2005). Reduction of a model of an excitable cell to a one-dimensional map. Physica D, 202(1–2), 87–106.

    Google Scholar 

  • Medvedev, G. M. (2006). Transition to bursting via deterministic chaos. Physical Review Letters, 97, 048102.

    Article  PubMed  Google Scholar 

  • Mira, C. (1987). Chaotic dynamics from the one-dimensional endomorphism to the two-dimensional diffeomorphism. Singapore: World Scientific.

    Google Scholar 

  • Pedersen, M. G., & Sorensen, M. P. (2007). The effect of noise of β-cell burst period. SIAM Journal on Applied Mathematics, 67, 530–542.

    Article  Google Scholar 

  • Pei, X., & Moss, F. (1996). Characterization of low-dimensional dynamics in the crayfish caudal photoreceptor. Nature, 379(6566), 618–621.

    Article  CAS  PubMed  Google Scholar 

  • Pontryagin, L. S., & Rodygin, L. V. (1960). Periodic solution of a system of ordinary differential equations with a small parameter in the terms containing derivatives. Soviet Mathematics. Doklady, 1, 611–661.

    Google Scholar 

  • Rabinovich, M. I., Varona, P., Silverston, A. L., & Abarbanel, H. D. (2006). Dynamics principles in neuroscience. Reviews of Modern Physics, 78(4), 1213–1265.

    Article  Google Scholar 

  • Rinzel, J. (1985). Bursting oscillations in an excitable membrane model. Lecture Notes in Mathematics, 1151, 304–316.

    Article  Google Scholar 

  • Rinzel, J., & Ermentrout, B. (1998). Analysis of neural excitability and oscillations. In C., Koch & I., Segev (Eds.), Computational neuroscience (pp. 135–169). Cambridge: MIT.

    Google Scholar 

  • Rinzel, J., & Wang, X. J. (1995). Oscillatory and bursting properties of neurons. In M. Arbib (Ed.), The handbook of brain theory and neural networks (pp. 686–691). Cambridge: MIT.

    Google Scholar 

  • Rowat, P. (2007). Interspike interval statistics in the stochastic Hodgkin-Huxley model: Coexistence of gamma frequency bursts and highly irregular firing. Neural Computation, 19(5), 1215–1250.

    Article  PubMed  Google Scholar 

  • Rowat, P. F., & Elson, R. C. (2004). State-dependent effects of Na channel noise on neuronal burst generation. Journal of Computational Neuroscience, 16(2), 87–112.

    Article  PubMed  Google Scholar 

  • Schiff, S. J., Jerger, K., Duong, D. H., Chang, T., Spano, M. L., & Ditto, W. L. (1994). Controlling chaos in the brain. Nature, 370(6491), 615–620.

    Article  CAS  PubMed  Google Scholar 

  • Sharkovsky, A. N., Kolyada, S. F., Sivak, A. G., & Fedorenko, V. V. (1997). Dynamics of one-dimensional maps. Mathematics and its applications (Vol. 407). Dordrecht: Kluwer.

    Google Scholar 

  • Shilnikov, A. L. (1993). On bifurcations of the Lorenz attractor in the Shimizu-Morioka model. Physica D, 62(1–4), 338–346.

    Article  Google Scholar 

  • Shilnikov, A., & Cymbalyuk, G. (2004). Homoclinic saddle-node orbit bifurcations en a route between tonic spiking and bursting in neuron models, invited paper. Regular & Chaotic Dynamics, 9, 281–297.

    Article  Google Scholar 

  • Shilnikov, A. L., Calabrese, R. L., & Cymbalyuk, G. (2005). Mechanism of bistability: Tonic spiking and bursting in a neuron model. Physical Review E, 71, 056214.

    Article  Google Scholar 

  • Shilnikov, A. L., & Cymbalyuk, G. (2005). Transition between tonic spiking and bursting in a neuron model via the blue-sky catastrophe. Physical Review Letters, 94(4), 048101.

    Article  PubMed  Google Scholar 

  • Shilnikov, A. L., & Kolomiets, M. L. (2008). Methods of the qualitative theory for the Hindmarsh-Rose model: A case study. A tutorial. International Journal of Bifurcation and Chaos, 18(7), 1–32.

    Google Scholar 

  • Shilnikov, A. L., & Rulkov, N. F. (2003). Origin of chaos in a two-dimensional map modelling spiking-bursting neural activity. International Journal of Bifurcation and Chaos, 13(11), 3325–3340.

    Article  Google Scholar 

  • Shilnikov, A. L., & Rulkov, N. F. (2004). Subthreshold oscillations in a map-based neuron model. Physics Letters A, 328(2–3), 177–184.

    Article  CAS  Google Scholar 

  • Shilnikov, L. P., Shilnikov, A. L., Turaev, D., & Chua, L. O. (1998, 2001). Methods of qualitative theory in nonlinear dynamics (Vols. 1 and 2). Singapore: World Scientific.

    Google Scholar 

  • So, P., Ott, E., Schiff, S. J., Kaplan, D. T., Sauer, T., & Grebogi, C. (1996). Detecting unstable periodic orbits in chaotic experimental data. Physical Review Letters, 76(25), 4705–4708.

    Article  CAS  PubMed  Google Scholar 

  • Steriade, M., Jones, E. G., & Llinas, R. R. (1990). Thalamic oscillations and signaling. New York: Wiley.

    Google Scholar 

  • Steriade, M., McCormick, D. A., & Sejnowski, T. J. (1993). Thalamocortical oscillations in the sleeping and aroused brain. Science, 262(5134), 679–685.

    Article  CAS  PubMed  Google Scholar 

  • Su, J., Rubin, J., & Terman, D. (2004). Effects of noise on elliptic bursters. Nonlinearity, 17, 13300157.

    Article  Google Scholar 

  • Terman, D. (1991). Chaotic spikes arising from a model of bursting in excitable membranes. SIAM Journal on Applied Mathematics, 51(5), 1418–1450.

    Article  Google Scholar 

  • Terman, D. (1992). The transition from bursting to continuous spiking in excitable membrane models. Journal of Nonliear Science, 2(2), 135–182.

    Article  Google Scholar 

  • Tikhonov, A. N. (1948). On the dependence of solutions of differential equations from a small parameter. Matemati(̌c)eskij Sbornik, 22(64), 193–204.

    Google Scholar 

  • Wang, X. J. (1993). Genesis of bursting oscillations in the Hindmarsh-Rose model and homoclinicity to a chaotic saddle. Physica D, 62(1–4), 263–274.

    Article  Google Scholar 

  • Yang, Z., Qishao, L., & Li, L. (2006). The genesis of period-adding bursting without bursting-chaos in the Chay model. Chaos, Solitons and Fractals, 27(3), 689–697.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank G. Cymbalyuk and R. Clewley for valuable discussions. We are grateful to anonymous reviewers for inspiring critique and useful suggestions. P.C. was supported by a fellowship through the GSU Brains and Behavior program; A.L.S. was supported by the GSU Brains and Behavior program and by the RFFI grant No 050100558. A.N. was supported in part by the Biomimetic Nanoscience and Nanotechnology program of Ohio University. I.F. was supported by the Faculty for the Future Fellowship awarded by the Schlumberger Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrey L. Shilnikov.

Additional information

Action Editor: J. Rinzel

Rights and permissions

Reprints and permissions

About this article

Cite this article

Channell, P., Fuwape, I., Neiman, A.B. et al. Variability of bursting patterns in a neuron model in the presence of noise. J Comput Neurosci 27, 527–542 (2009). https://doi.org/10.1007/s10827-009-0167-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-009-0167-1

Keywords

Navigation