Skip to main content
Log in

Pattern orthogonalization via channel decorrelation by adaptive networks

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

The early processing of sensory information by neuronal circuits often includes a reshaping of activity patterns that may facilitate further processing in the brain. For instance, in the olfactory system the activity patterns that related odors evoke at the input of the olfactory bulb can be highly similar. Nevertheless, the corresponding activity patterns of the mitral cells, which represent the output of the olfactory bulb, can differ significantly from each other due to strong inhibition by granule cells and peri-glomerular cells. Motivated by these results we study simple adaptive inhibitory networks that aim to separate or even orthogonalize activity patterns representing similar stimuli. Since the animal experiences the different stimuli at different times it is difficult for the network to learn the connectivity based on their similarity; biologically it is more plausible that learning is driven by simultaneous correlations between the input channels. We investigate the connection between pattern orthogonalization and channel decorrelation and demonstrate that networks can achieve effective pattern orthogonalization through channel decorrelation if they simultaneously equalize their output levels. In feedforward networks biophysically plausible learning mechanisms fail, however, for even moderately similar input patterns. Recurrent networks do not have that limitation; they can orthogonalize the representations of highly similar input patterns. Even when they are optimized for linear neuronal dynamics they perform very well when the dynamics are nonlinear. These results provide insights into fundamental features of simplified inhibitory networks that may be relevant for pattern orthogonalization by neuronal circuits in general.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Arevian, A. C., Kapoor, V., & Urban, N. N. (2008). Activitydependent gating of lateral inhibition in the mouse olfactory bulb. Nature Neuroscience, 11(1), 80–87.

    Article  CAS  PubMed  Google Scholar 

  • Atick, J. J., & Redlich, A. N. (1993). Convergent algorithm for sensory receptive-field development. Neural Computation, 5(1), 45–60.

    Article  Google Scholar 

  • Barlow, H. B. (1989). Unsupervised learning. Neural Computation, 1, 295.

    Article  Google Scholar 

  • Barlow, H. (2001). Redundancy reduction revisited. Netw.-Comput. Neural Syst., 12(3), 241–253.

    CAS  Google Scholar 

  • Bazhenov, M., Stopfer, M., Rabinovich, M., Huerta, R., Abarbanel, H. D. I., Sejnowski, T. J., et al. (2001). Model of transient oscillatory synchronization in the locust antennal lobe. Neuron, 30(2), 553–567.

    Article  CAS  PubMed  Google Scholar 

  • Bell, A. J., & Sejnowski, T. J. (1997). The “independent components” of natural scenes are edge filters. Vision Research, 37(23), 3327–3338.

    Article  CAS  PubMed  Google Scholar 

  • Bhandawat, V., Olsen, S. R., Gouwens, N. W., Schlief, M. L., & Wilson, R. I. (2007). Sensory processing in the drosophila antennal lobe increases reliability and separability of ensemble odor representations. Nature Neuroscience, 10(11), 1474–1482.

    Article  CAS  PubMed  Google Scholar 

  • Cecchi, G. A., Petreanu, L. T., Alvarez-Buylla, A., & Magnasco, M. O. (2001). Unsupervised learning and adaptation in a model of adult neurogenesis. Journal of Computational Neuroscience, 11(2), 175–182.

    Article  CAS  PubMed  Google Scholar 

  • Cleland, T. A., & Sethupathy, P. (2006). Non-topographical contrast enhancement in the olfactory bulb. BMC Neuroscience, 7, 7.

    Article  PubMed  Google Scholar 

  • Dimitrov, A., & Cowan, J. D. (1998). Spatial decorrelation in orientation-selective cortical cells. Neural Computation, 10(7), 1779–1795.

    Article  CAS  PubMed  Google Scholar 

  • French, R. M. (1999). Catastrophic forgetting in connectionist networks. Trends in Cognitive Sciences, 3(4), 128–135.

    Article  PubMed  Google Scholar 

  • Friedrich, R. W., & Korsching, S. I. (1997). Combinatorial and chemotopic odorant coding in the zebrafish olfactory bulb visualized by optical imaging. Neuron, 18, 737.

    Article  CAS  PubMed  Google Scholar 

  • Friedrich, R. W., & Laurent, G. (2001). Dynamic optimization of odor representations by slow temporal patterning of mitral cell activity. Science, 291, 889.

    Article  CAS  PubMed  Google Scholar 

  • Friedrich, R. W., & Laurent, G. (2004). Dynamics of olfactory bulb input and output activity during odor stimulation in zebrafish. Journal of Neurophysiology, 91, 2658.

    Article  PubMed  Google Scholar 

  • Friedrich, R. W., Habermann, C. J., & Laurent, G. (2004). Multiplexing using synchrony in the zebrafish olfactory bulb. Nature Neuroscience, 7, 862.

    Article  CAS  PubMed  Google Scholar 

  • Gao, Y., & Strowbridge, B. B. (2008). Long-term potentiation of cortical feedback input to granule cells in the olfactory bulb. In Annual meeting of the society for neuroscience (pp. 434.22). Poster

  • Goodall, M. C. (1960). Performance of a stochastic net. Nature, 185(4712), 557–558.

    Article  Google Scholar 

  • Gutierrez-Galvez, A., & Gutierrez-Osuna, R. (2006). Increasing the separability of chemosensor array patterns with hebbian/anti-hebbian learning. Sensors and Actuators B, 116(1–2), 29–35.

    Article  Google Scholar 

  • Hertz, J., Krogh, A., & Palmer, R. G. (1991). Introduction to the theory of neural computation. Reading: Addison-Wesley.

    Google Scholar 

  • Jurs, P. C., Bakken, G. A., & McClelland, H. E. (2000). Computational methods for the analysis of chemical sensor array data from volatile analytes. Chemical Reviews, 100(7), 2649–2678.

    Article  CAS  PubMed  Google Scholar 

  • Laurent, G. (1996). Dynamical representation of odors by oscillating and evolving neural assemblies. Trends in Neurosciences, 19(11), 489–496.

    Article  CAS  PubMed  Google Scholar 

  • Laurent, G., Wehr, M., & Davidowitz, H. (1996). Temporal representations of odors in an olfactory network. Journal of Neuroscience, 16(12), 3837–3847.

    CAS  PubMed  Google Scholar 

  • Linster, C., Sachse, S., & Galizia, C. G. (2005). Computational modeling suggests that response properties rather than spatial position determine connectivity between olfactory glomeruli. Journal of Neurophysiology, 93(6), 3410–3417.

    Article  PubMed  Google Scholar 

  • Linster, C., Johnson, B. A., Morse, A., Yue, E., & Leon, M., (2002). Spontaneous versus reinforced olfactory discriminations. Journal of Neuroscience, 22(16), 6842–6845.

    CAS  PubMed  Google Scholar 

  • Linster, C., Johnson, B. A., Yue, E., Morse, A., Xu, Z., Hingco, E., et al. (2001). Perceptual correlates of neural representations evoked by odorant enantiomers. Journal of Neuroscience, 21(24), 9837–9843

    CAS  PubMed  Google Scholar 

  • Lledo, P. M., Alonso, M., & Grubb, M. S. (2006). Adult neurogenesis and functional plasticity in neuronal circuits. Nature Reviews. Neuroscience, 7(3), 179–193.

    Article  CAS  PubMed  Google Scholar 

  • Mazor, O., & Laurent, G. (2005). Transient dynamics versus fixed points in odor representations by locust antennal lobe projection neurons. Neuron, 48(4), 661–673.

    Article  CAS  PubMed  Google Scholar 

  • Meister, M., & Berry, M. J. (1999). The neural code of the retina. Neuron, 22(3), 435–450.

    Article  CAS  PubMed  Google Scholar 

  • Muezzinoglu, M. K., Huerta, R., Abarbanel, H. D. I., Ryan, M. A., & Rabinovich, M. I. (2009). Chemosensor-driven artificial antennal lobe transient dynamics enable fast recognition and working memory. Neural Computation, 21(4), 1018–1037.

    Article  PubMed  Google Scholar 

  • Nadal, J. P., & Parga, N. (1994). Nonlinear neurons in the low-noise limit—a factorial code maximizes information-transfer. Netw.-Comput. Neural Syst., 5(4), 565–581.

    Article  Google Scholar 

  • Olshausen, B. A., & Field, D. J. (1996). Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature, 381(6583), 607–609.

    Article  CAS  PubMed  Google Scholar 

  • Rodieck, R. W., & Stone, J. (1965). Response of cat retinal ganglion cells to moving visual patterns. Journal of Neurophysiology, 28(5), 819–832.

    CAS  PubMed  Google Scholar 

  • Satou, M., Anzai, S., & Huruno, M. (2005). Long-term potentiation and olfactory memory formation in the carp (cyprinus carpio l.) olfactory bulb. Compar, J., Physiol A, 191(5), 421–434.

    Article  CAS  Google Scholar 

  • Satou, M., Hoshikawa, R., Sato, Y., & Okawa, K. (2006). An in vitro study of long-term potentiation in the carp (cyprinus carpio l.) olfactory bulb. Compar, J., Physiol A, 192(2), 135–150.

    Article  CAS  Google Scholar 

  • Schmuker, M., & Schneider, G. (2007). Processing and classification of chemical data inspired by insect olfaction. Proceedings of the National Academy of Sciences of the United States of America, 104(51), 20285–20289.

    Article  CAS  PubMed  Google Scholar 

  • Soucy, E. R., Albeanu, D. F., Fantana, A. L., Murthy, V. N., & Meister, M. (2009). Precision and diversity in an odor map on the olfactory bulb. Nature Neuroscience, 12(2), 210–220.

    Article  CAS  PubMed  Google Scholar 

  • Srivastava, V., Parker, D. J., & Edwards, S. F. (2008). The nervous system might ‘orthogonalize’ to discriminate. Journal on Theoretical Biology, 253(3), 514–517.

    Article  Google Scholar 

  • Stopfer, M., Jayaraman, V., & Laurent, G. (2003). Intensity versus identity coding in an olfactory system. Neuron, 39(6), 991–1004.

    Article  CAS  PubMed  Google Scholar 

  • Tabor, R., & Friedrich, R. W. (2008). Pharmacological analysis of ionotropic glutamate receptor function in neuronal circuits of the zebrafish olfactory bulb. PLoS ONE, 3(1), e1416.

    Article  Google Scholar 

  • Yaksi, E., Judkewitz, B., & Friedrich, R. W. (2007). Topological reorganization of odor representations in the olfactory bulb. PLOS Biology, 5(7), e178.

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge stimulating discussions with T. Bozza, J. Cang, and S.A. Solla. HR gratefully acknowledges support by the Alexander-von-Humboldt Foundation, NIH (1F33DC8064-1), and NSF (DMS-9804673 and DMS-0719944). HR also expresses his appreciation for the hospitality of the Aspen Center for Physics, where the foundation for this research was laid. The research of RWF and MTW was supported by the Max-Planck-Society, the Novartis Research Foundation and by grants from the EU and the DFG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stuart D. Wick.

Additional information

Action Editor: C. Linster

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wick, S.D., Wiechert, M.T., Friedrich, R.W. et al. Pattern orthogonalization via channel decorrelation by adaptive networks. J Comput Neurosci 28, 29–45 (2010). https://doi.org/10.1007/s10827-009-0183-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-009-0183-1

Keywords