Skip to main content

Advertisement

Log in

Exocytotic dynamics and calcium cooperativity effects in the calyx of Held synapse: a modelling study

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

A stochastic computational approach to the study of secretory processes at the calyx of Held synapse is presented in this paper. The calyx of Held is a giant synapse located in the brainstem which is widely used for experimental recording of neurotransmitter release. We focus on the study of the exocytotic dynamics for a pool of readily releasable vesicles using a Monte Carlo simulation scheme that includes models for the P-type calcium channels, the kinetic reactions of endogenous and exogenous (mobile) buffers, the kinetic reactions for the secretory vesicles, as well as the microscopic diffusion of mobile buffers and calcium ions. The simulations are performed in a 3-D orthogonal grid which approximates a cylindrical domain representing an active zone of the presynaptic terminal of the calyx. For this domain, we quantify the release rates related to calcium currents in response to depolarizing voltage pulses. The influence on simulated pulse/action potential depolarization protocols of the kinetic scheme for the calcium sensor of vesicles and the geometry of calcium channels for the kinetic cooperativity for release, is analyzed at a microdomain level. Among other aspects, our results suggest that the spatial organization of Ca 2 +  channels could have measurable effects in the kinetic cooperativity which could reflect developing changes in the calyx of Held synapse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Adler, E. M., Augustine, G. J., Duffy, S. N., & Charlton, M. (1991). Alien intracellular calcium chelators attenuate neurotransmitter release at the squid giant synapse. Journal of Neuroscience, 11(6), 1496–1507.

    CAS  PubMed  Google Scholar 

  • Bartol, T. M., Land, B. R., Salpeter, E. E., & Salpeter, M. M. (1991). Monte Carlo simulation of miniature end-plate current generation in the vertebrate neuromuscular junction. Biophysical Journal, 59(6), 1290–1307.

    Article  CAS  PubMed  Google Scholar 

  • Bennett, M., Farnell, L., & Gibson, W. (2000). The probability of quantal secretion within an array of calcium channels of an active zone. Biophysical Journal, 78, 2222–2240.

    Article  CAS  PubMed  Google Scholar 

  • Bollmann, J., Sakmann, B., & Borst, J. (2000). Calcium sensitivity of glutamate release in a calyx-type terminal. Science, 289, 953–957.

    Article  CAS  PubMed  Google Scholar 

  • Borst, J., & Sakmann, B. (1996). Calcium influx and transmitter release in a fast cns synapse. Nature, 383, 431–434.

    Article  CAS  PubMed  Google Scholar 

  • Carrera, G., Gil, A., Segura, J., & Soria, B. (2007). Software for simulating calcium-triggered exocytotic processes. American Journal of Physiology Cell Physiology, 292, C749–C755.

    Article  Google Scholar 

  • Cens, T., Rousset, M., Leyris, J., Fesquet, P., & Charnet, P. (2006). Voltage- and calcium-dependent inactivation in high voltage-gated ca 2 +  channels. Progress in Biophysics and Molecular Biology, 90, 104–117.

    Article  CAS  PubMed  Google Scholar 

  • Collin, T., et al. (2005). Developmental changes in parvalbumin regulate presynaptic ca 2 +  signaling. Journal of Neuroscience, 25(1), 96–107.

    Article  CAS  PubMed  Google Scholar 

  • Dodge, F., & Rahamimoff, R. (1967). Co-operative action of calcium ions in transmitter release at the neuromuscular junction. Journal of Physiology, 193, 419–432.

    CAS  PubMed  Google Scholar 

  • Dove, L., Abbott, L., & Griffith, W. (1998). Whole-cell and single-channel analysis of p-type calcium currents in cerebellar purkinje cells of leaner mutant mice. Journal of Neuroscience, 18, 7687–7699.

    CAS  PubMed  Google Scholar 

  • Fedchyshyn, M., & Wang, L. Y. (2005). Developmental transformation of the release modality at the calyx of held synapse. Journal of Neuroscience, 25(16), 4131–4140.

    Article  CAS  PubMed  Google Scholar 

  • Gentile, L., & Stanley, E. (2005). A unified model of presynaptic release site gating by calcium channel domains. European Journal of Neuroscience, 21, 278–282.

    Article  PubMed  Google Scholar 

  • Gil, A., & Segura, J. (2001). Ca3d: A Monte Carlo code to simulate 3d buffered calcium diffusion of ions in sub-membrane domains. Computer Physics Communications, 136, 269–293.

    Article  CAS  Google Scholar 

  • Gil, A., Segura, J., Pertusa, J., & Soria, B. (2000). Monte Carlo simulation of 3-d buffered ca 2 +  diffusion in neuroendocrine cells. Biophysical Journal, 78(1), 13–33.

    Article  CAS  PubMed  Google Scholar 

  • Gilmanov, I., Samigullin, D., Vyskocil, F., Nikolsky, E., & Bukharaeva, E. (2008). Modeling of quantal neurotransmitter release kinetics in the presence of fixed and mobile calcium buffers. Journal of Computational Neuroscience, 25(2), 296–307.

    Article  PubMed  Google Scholar 

  • González-Vélez, V., & González-Vélez, H. (2007). Parallel stochastic simulation of macroscopic calcium currents. J. Bioinf. Comput. Biol., 5(3), 755–772.

    Article  Google Scholar 

  • Grynkiewicz, G., Poenie, M., & Tsien, R. (1985). A new generation of ca 2 +  indicators with greatly improved fluorescence properties. Journal of Biological Chemistry, 260, 3440–3450.

    CAS  PubMed  Google Scholar 

  • Iwasaki, S., et al. (2000). Developmental changes in calcium channel types mediating central synaptic transmission. Journal of Neuroscience, 20, 59–65.

    CAS  PubMed  Google Scholar 

  • Katz, B., & Miledi, R. (1965). Effect of calcium on acetylcholine release from motor nerve terminals. Proceedings of the Royal Society of London Series B Biological Sciences, 161, 496.

    Article  CAS  Google Scholar 

  • Klingauf, J., & Neher, E. (1997). Modeling buffered ca2 +  diffusion near the membrane: Implications for secretion in neuroendocrine cells. Biophysical Journal, 72, 674–690.

    Article  CAS  PubMed  Google Scholar 

  • Leao, R., & von Gersdorff, H. (2009). Synaptic vesicle pool size, release probability and synaptic depression are sensitive to ca2+ buffering capacity in the developing rat calyx of held. Brazilian Journal of Medical and Biological Research, 42(1), 94–104.

    Article  CAS  PubMed  Google Scholar 

  • Llinás, R., Sugimori, M., & Silver, R. (1995). The concept of calcium concentration microdomains in synaptic transmission. Neuropharmacology, 34, 1443–1451.

    Article  PubMed  Google Scholar 

  • Lou, X., Scheuss, V., & Schneggenburger, R. (2005). Allosteric modulation of the presynaptic ca2+ sensor for vesicle fusion. Nature, 435, 497–501.

    Article  CAS  PubMed  Google Scholar 

  • Meinrenken, C., Borst, J., & Sakmann, B. (2002). Calcium secretion coupling at calyx of held goverened by nonuniform channel-vesicle topography. Journal of Neuroscience, 22, 1648–1667.

    CAS  PubMed  Google Scholar 

  • Meinrenken, C., Borst, J., & Sakmann, B. (2003). Local routes revisited: The space and time dependence of the ca 2 +  signal for phasic transmitter release at the rat calyx of held. Journal of Physiology, 547, 665–689.

    CAS  PubMed  Google Scholar 

  • Meir, A., et al. (1999). Ion channels in presynaptic nerve terminals and control of transmitter release. Physiological Reviews, 79(3), 1019–1088.

    CAS  PubMed  Google Scholar 

  • Neher, E. (1986). Concentration profiles of intracellular calcium in the presence of a diffusible chelator. Experimental Brain Research, 14, 80–96.

    CAS  Google Scholar 

  • Roberts, W. (1994). Localization of calcium signals by a mobile calcium buffer in frog saccular hair cells. Journal of Neuroscience, 14(5), 3246–3262.

    CAS  PubMed  Google Scholar 

  • Sakaba, T., & Neher, E. (2001a). Calmodulin mediates rapid recruitment of fast-releasing synaptic vesicles at a calyx-type synapse. Neuron, 32, 1119–1131.

    Article  CAS  PubMed  Google Scholar 

  • Sakaba, T., & Neher, E. (2001b). Quantitative relationship between transmitter release and calcium current at the calyx of held synapse. Journal of Neuroscience, 21(2), 462–476.

    CAS  PubMed  Google Scholar 

  • Sãtzler, K., et al. (2002). Three-dimensional reconstruction of a calyx of held and its postsynaptic principal neuron in the medial nucleus of the trapezoid body. Journal of Neuroscience, 22, 10,567–10,579.

    Google Scholar 

  • Schneggenburger, R., & Forsythe, I. (2006) The calyx of held. Cell & Tissue Research, 326, 311–337.

    Article  Google Scholar 

  • Schneggenburger, R., & Neher, E. (2000). Intracellular calcium dependence of transmitter release rates at a fast central synapse. Nature, 406, 889–893.

    Article  CAS  PubMed  Google Scholar 

  • Segura, J., Gil, A., & Soria, B. (2000). Modeling study of exocytosis in neuroendocrine cells: Influence of the geometrical parameters. Biophysical Journal, 79, 1771–1786.

    Article  CAS  PubMed  Google Scholar 

  • Shahrezaei, V., & Delaney, K. (2004). Consequences of molecular-level ca 2 +  channel and synaptic vesicle colocalization for the ca 2 +  microdomain and neurotransmitter exocytosis: A monte carlo study. Biophysical Journal, 87, 2353–2364.

    Article  Google Scholar 

  • Shahrezaei, V., & Delaney, K. (2005). Brevity of the ca 2 +  microdomain and active zone geometry prevent ca 2 +  -sensor saturation for neurotransmitter release. Journal of Neurophysiology, 94, 1912–1919.

    Article  CAS  PubMed  Google Scholar 

  • Simon, S., & Llinás, R. (1985). Compartmentalization of the submembrane calcium activity during calcium influx and its significance in transmitter release. Biophysical Journal, 48(3), 485–498.

    Article  CAS  PubMed  Google Scholar 

  • Sun, J., Pang, Z., Qin, D., Fahim, A., Adachi, R., & Sudhof, T. (2007). A dual-ca 2 + -sensor model for neurotransmitter release in a central synapse. Nature, 450, 676–683.

    Article  CAS  PubMed  Google Scholar 

  • Taschenberger, H., Leão, R., Rowland, K., Spirou, G., & von Gersdorff, H. (2002). Optimizing synaptic architecture and efficiency for high-frequency transmission. Neuron, 36, 1127–1143.

    Article  CAS  PubMed  Google Scholar 

  • Wang, L. Y., Neher, E., & Taschenberger, H. (2008). Synaptic vesicles in mature calyx of held synapses sense higher nanodomain calcium concentrations during action potential-evoked glutamate release. Journal of Neuroscience, 28(53), 14,450–14,458.

    Article  CAS  Google Scholar 

  • Wu, L., et al. (1999). Calcium channel types with distinct presynaptic localization couple differentially to transmitter release in single calyx-type synapses. Journal of Neuroscience, 19, 726–736.

    CAS  PubMed  Google Scholar 

  • Zamponi, G. (2005). Voltage-gated calcium channels. Landes Bioscience. New York: Kluwer Academic/Plenum.

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the three anonymous referees for useful comments and suggestions. The authors also acknowledge useful discussions with J. Segura (U. Cantabria) and financial support from I-MATH project C3-0136. V. González-Vélez thanks CONACyT for financial support through her PhD scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amparo Gil.

Additional information

Action Editor: Upinder Singh Bhalla

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gil, A., González-Vélez, V. Exocytotic dynamics and calcium cooperativity effects in the calyx of Held synapse: a modelling study. J Comput Neurosci 28, 65–76 (2010). https://doi.org/10.1007/s10827-009-0187-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-009-0187-x

Keywords

Navigation