Skip to main content
Log in

The effects of various spatial distributions of weak noise on rhythmic spiking

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

We consider the response of the classical Hodgkin–Huxley (HH) spatial system in the weak to intermediate noise regime near the bifurcation to repetitive spiking. The deterministic component of the input (signal) is restricted to a small segment near the origin whereas noise, with parameter σ, occurs either only in the signal region or throughout the whole neuron. In both cases small noise inhibits the spiking and there is a minimum in the spike counts at σ ≈ 0.15. At the same value of σ, the variance of the spike counts undergoes a pronounced maximum. For spatially restricted noise, the spike count continues to increase beyond the minimum until σ = 0.5, but in the case of spatially extended noise the spike count begins to decline around σ = 0.35 to give a local maximum. For both spatial distributions of noise, the variance of the spike count is found to also have a local minimum at about σ = 0.4. Examples are given of the probability distributions of the spike counts and the spatial distributions of spikes with varying noise level. The differences in behaviours of the spike counts as noise increases beyond 0.3 are attributable to noise-induced spiking outside the signal region, which has a larger probability of occurrence when the noise is over an extended region. This aspect is investigated by ascertaining the probability of noise-induced spiking as a function of noise level and examination of the corresponding latency distributions. These findings prompt a definition of weak noise in the standard HH model as that for which the probability of secondary phenomena is negligible, which occurs when σ is less than about 0.3. Finally, if signal and weak (σ < 0.3) noise are applied on disjoint intervals, then the noise has no effect on the instigation or propagation of spikes, no matter how large its region of application. These results are expected to apply to type 2 neurons in general, including the majority of cortical pyramidal cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • Brown, D., Feng, J., & Feerick, S. (1999). Variability of firing of Hodgkin–Huxley and FitzHugh–Nagumo neurons with stochastic synaptic input. Physical Review Letters, 82, 4731–4734.

    Article  CAS  Google Scholar 

  • Bruce, I. C. (2007). Implementation issues in approximate methods for stochastic Hodgkin–Huxley models. Annals of Biomedical Engineering, 35, 315–318.

    Article  PubMed  Google Scholar 

  • Calitoiu, D., Oommen, B. J., & Nussbaum, D. (2008). Spikes annihilation in the Hodgkin–Huxley neuron. Biological Cybernetics, 98, 239–257.

    Article  PubMed  CAS  Google Scholar 

  • Conley, C. (1975). On travelling wave solutions of nonlinear diffusion equations. Springer Lecture Notes in Mathematics, 38, 498–510.

    Google Scholar 

  • Destexhe, A., Neubig, M., Ulrich, D., & Huguenard, J. (1998). Dendritic low-threshold calcium currents in thalamic relay cells. Journal of Neuroscience, 18, 3574–3588.

    PubMed  CAS  Google Scholar 

  • Faisal, A. A., & Laughlin, S. B. (2007). Stochastic simulations on the reliability of action potential propagation in thin axons. P.L.oS. Computational Biology, 3, e79.

    Article  Google Scholar 

  • Forger, D. B., & Paydarfar, D. (2004). Starting, stopping, and resetting biological oscillators: In search of optimum perturbations. Journal of Theoretical Biology, 230, 521–532.

    Article  PubMed  Google Scholar 

  • Haragus, M., & Iooss, G. (2010). Local bifurcations, center manifolds, and normal forms in infinite dimensional dynamical systems. Berlin: Springer.

    Google Scholar 

  • Hassard, B. (1978). Bifurcation of periodic solutions of the Hodgkin–Huxley model for the squid giant axon. Journal of Theoretical Biology, 71, 401–420.

    Article  PubMed  CAS  Google Scholar 

  • Hastings, S. P. (1976). On travelling wave solutions of the Hodgkin–Huxley equations. Arhive for Rational Mechanics and Analysis, 60, 229–257.

    Article  Google Scholar 

  • Hodgkin, A. L., & Huxley, A. F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. Journal of Physiology, 117, 500–544.

    PubMed  CAS  Google Scholar 

  • Horikawa, Y. (1991). Noise effects on spike propagation in the stochastic Hodgkin–Huxley models. Biological Cybernetics, 66, 19–25.

    Article  PubMed  CAS  Google Scholar 

  • Jost, J. (2007). Partial differential equations (2nd ed.). Berlin: Springer.

    Book  Google Scholar 

  • Kielhöfer, H. (2003). Bifurcation theory: An introduction with applications to P.D.E.s. Berlin: Springer.

    Google Scholar 

  • Komendantov, A. O., Trayanova, N. A., & Tasker, J. G. (2007). Somato-dendritic mechanisms underlying the electrophysiological properties of hypothalamic magnocellular neuroendocrine cells: A multicompartmental model study. Journal of Computational Neuroscience, 23, 143–168.

    Article  PubMed  Google Scholar 

  • Lv, Y. G. (2007). Theoretical evaluation on monitoring hypothermic anesthesia by the electrical response of human skin neurons. Forschung im Ingenieurwesen, 71, 79–88.

    Article  Google Scholar 

  • McDonnell, M. D., & Abbott, D. (2007). What is stochastic resonance? Definitions, misconceptions, debates, and its relevance to biology. P.L.oS. Computational Biology, 5, e1000348.

    Article  Google Scholar 

  • Ozer, M., & Graham, L. J. (2008). Impact of network activity on noise delayed spiking for a Hodgkin–Huxley model. European Physical Journal B, 61, 499–503.

    Article  CAS  Google Scholar 

  • Ozer, M., & Uzuntarla, M. (2008). Effects of the network structure and coupling strength on the noise-induced response delay of a neuronal network. Physics Letters A, 372, 4603–4609.

    Article  CAS  Google Scholar 

  • Pankratova, E. V., Polovinkin, A. V., & Mosekilde, E. (2005). Resonant activation in a stochastic Hodgkin–Huxley model: Interplay between noise and suprathreshold driving effects. European Physical Journal B, 45, 391–397.

    Article  CAS  Google Scholar 

  • Paydarfar, D., Forger, D. B., & Clay, J. R. (2006). Noisy inputs and the induction of on-off switching behavior in a neuronal pacemaker. Journal of Neurophysiology, 96, 3338–3348.

    Article  PubMed  Google Scholar 

  • Rall, W. (1962). Theory of physiological properties of dendrites. Annals of the New York Academy of Sciences, 96, 1071–1092.

    Article  PubMed  CAS  Google Scholar 

  • Rhodes, P. A., & Llinás, R. (2005). A model of thalamocortical relay cells. Journal of Physiology, 565, 765–781.

    Article  PubMed  CAS  Google Scholar 

  • Smoller, J. (1983). Shock waves and reaction-diffusion equations. Berlin: Springer.

    Google Scholar 

  • Tiesinga, P. H. E., José, J. V., & Sejnowski, T. J. (2000). Comparison of current-driven and conductance-driven neocortical model neurons with Hodgkin–Huxley voltage-gated channels. Physical Review E, 62, 8413-8419.

    Article  CAS  Google Scholar 

  • Torcini, A., Luccioli, S., & Kreuz, T. (2007). Coherent response of the Hodgkin–Huxley neuron in the high-input regime. Neurocomputing, 70, 1943–1948.

    Article  Google Scholar 

  • Tuckwell, H. C. (2005). Spike trains in a stochastic Hodgkin–Huxley system. BioSystems, 80, 25–36.

    Article  Google Scholar 

  • Tuckwell, H. C. (2008). Analytical and simulation results for the stochastic spatial Fitzhugh–Nagumo neuron. Neural Computation, 20, 3003–3035.

    Article  PubMed  Google Scholar 

  • Tuckwell, H. C., & Jost, J. (2009). Moment analysis of the Hodgkin–Huxley system with additive noise. Physica A, 388, 4115–4125.

    Article  Google Scholar 

  • Tuckwell, H. C., & Jost, J. (2010). Weak noise in neurons may powerfully inhibit the generation of repetitive spiking but not its propagation. P.L.oS. Computational Biology, 6, e1000794.

    Article  Google Scholar 

  • Tuckwell, H. C., Jost, J., & Gutkin, B. S. (2009). Inhibition and modulation of rhythmic neuronal spiking by noise. Physical Review E, 80, 031907.

    Article  Google Scholar 

  • Tuckwell, H. C., & Wan, F. Y. M. (2005). Time to first spike in stochastic Hodgkin–Huxley systems. Physica A, 351, 427–438.

    Article  Google Scholar 

  • Walsh, J. B., & Tuckwell, H. C. (1985). Determination of the electrical potential over dendritic trees by mapping onto a nerve cylinder. Journal of Theoretical Neurobiology, 4, 27–46.

    Google Scholar 

  • Yu, X., & Lewis, E. R. (1989). Studies with spike initiators: Linearization by noise allows continuous signal modulation in neural networks. IEEE Transactions on Biomedical Engineering, 36, 36–43.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

Thanks to Olivier Faugeras for some useful references.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henry C. Tuckwell.

Additional information

Action Editor: Bard Ermentrout

Appendix: The coefficients in the auxiliary equations

Appendix: The coefficients in the auxiliary equations

$$\begin{array}{rll} \alpha_n(V)&=& \frac{10-V} {100[e^{(10-V)/10}-1]}\\ \beta_n(V) &=& \frac{1}{8} e^{-V/80}\\ \alpha_m(V) &=& \frac{25-V}{ 10[e^{(25-V)/10}-1] }\\ \beta_m(V) &=& 4e^{-V/18} \\ \alpha_h(V)&=&\frac{7}{100} e^{-V/20}\\ \beta_h(V)&=& \frac{ 1}{ e^{(30-V)/10} + 1}. \end{array}$$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tuckwell, H.C., Jost, J. The effects of various spatial distributions of weak noise on rhythmic spiking. J Comput Neurosci 30, 361–371 (2011). https://doi.org/10.1007/s10827-010-0260-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-010-0260-5

Keywords

Navigation