Skip to main content
Log in

Auditory information coding by modeled cochlear nucleus neurons

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

In this paper we use information theory to quantify the information in the output spike trains of modeled cochlear nucleus globular bushy cells (GBCs). GBCs are part of the sound localization pathway. They are known for their precise temporal processing, and they code amplitude modulations with high fidelity. Here we investigated the information transmission for a natural sound, a recorded vowel. We conclude that the maximum information transmission rate for a single neuron was close to 1,050 bits/s, which corresponds to a value of approximately 5.8 bits per spike. For quasi-periodic signals like voiced speech, the transmitted information saturated as word duration increased. In general, approximately 80% of the available information from the spike trains was transmitted within about 20 ms. Transmitted information for speech signals concentrated around formant frequency regions. The efficiency of neural coding was above 60% up to the highest temporal resolution we investigated (20 μs). The increase in transmitted information to that precision indicates that these neurons are able to code information with extremely high fidelity, which is required for sound localization. On the other hand, only 20% of the information was captured when the temporal resolution was reduced to 4 ms. As the temporal resolution of most speech recognition systems is limited to less than 10 ms, this massive information loss might be one of the reasons which are responsible for the lack of noise robustness of these systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. In the case of very long bins, we sometimes counted two spikes in a bin, which we evaluated with “2”.

  2. Data processing inequality: If XYZ form a Markov chain which means X and Z are independent given Y, then I(X;Y) ≥ I(X;Z) (Cover and Thomas 1991).

References

  • Adrian, E. D. (1928). The basis of sensation: The action of the sense organs. London: Christophers; New York: Norton.

  • Attneave, F. (1954). Some information aspects of visual perception. Psychological Review, 61, 183–193.

    Article  PubMed  CAS  Google Scholar 

  • Blauert, J. (1974). Räumliches Hören. Hirzel Verlag Stuttgart.

  • Borst, A., & Theunissen, F. (1999). Information theory and neural coding. Nature Neuroscience, 2, 947–957.

    Article  PubMed  CAS  Google Scholar 

  • Cole, R., Muthusamy, Y., & Fanty, M. (1990). The ISOLET spoken letter database. Technical Report CS/E 90-004, Oregon Graduate Institute. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.56.2558. Accessed Sept 2010.

  • Cover, T., & Thomas, J. (1991). Elements of information theory. Wiley-Interscience.

  • Hemmert, W., Holmberg, M., & Ramacher, U. (2005). Temporal sound processing by cochlea nucleus octopus neurons. In Proc. ICANN 2005, LNCS 3696 (pp. 583–588). Berlin: Springer.

    Google Scholar 

  • Holmberg, M. (2007). Speech encoding in the human auditory periphery: Modeling and quantitative assessment by means of automatic speech recognition. Ph.D. thesis, Technical University Darmstadt, Darmstadt, Germany.

  • Holmberg, M., Gelbart, D., & Hemmert, W. (2007). Speech encoding in a model of peripheral auditory processing: Quantitative assessment by means of automatic speech recognition. Speech Communication, 49, 917–932.

    Article  Google Scholar 

  • Holmberg, M., & Hemmert, W. (2004). An auditory model for coding speech into nerve-action potentials. In Proc. Joint Congress CFA/DAGA’04 (pp. 773–774). Strasbourg, France.

  • Kiang, N. Y. S., Watanabe, T., Thomas, E. C., & Clark, L. F. (1965). Discharge patterns of single fibers in the cat’s auditory nerve. Technical report, Massachusetts Institute of Technology, Cambridge, MIT University Press.

  • Lopez-Poveda, E. A., Plack, C. J., & Meddis, R. (2003). Cochlear nonlinearity between 500 and 8,000 Hz in listeners with normal hearing. Journal of the Acoustical Society of America, 113, 951–960.

    Article  PubMed  Google Scholar 

  • Meddis, R. (1986). Simulation of mechanical to neural transduction in the auditory receptor. Journal of the Acoustical Society of America, 79(3), 702–711.

    Article  PubMed  CAS  Google Scholar 

  • Nemenman, I., Bialek, W., & de Ruyter van Steveninck, R. (2004). Entropy and information in neural spike trains: Progress on the sampling problem. Physical Review E, 69, 056111. http://link.aps.org/doi/10.1103/PhysRevE.69.056111.

  • Pichora-Fuller, M. K., Schneider, B. A., MacDonald, E., Pass, H. E., & Brown, S. (2007). Temporal jitter disrupts speech intelligibility: A simulation of auditory aging. Hearing Research, 223, 114–121.

    Article  PubMed  Google Scholar 

  • Rieke, F., Warland, D., de Ruyter van Steveninck, R., & Bialek, W. (1997). Spikes, exploring the neural code. Cambridge: MIT.

    Google Scholar 

  • Rothman, J. S., & Manis, P. B. (2003). The roles potassium currents play in regulating the electrical activity of ventral cochlear nucleus neurons. Journal of Neurophysiology, 89, 3097–3113.

    Article  PubMed  CAS  Google Scholar 

  • Shannon, C. E. (1948). A mathematical theory of communication. The Bell Systems Technical Journal, 27, 379–423, 623–656.

    Google Scholar 

  • Shera, C. A., Guinan, Jr., J. J., & Oxenham, A. J. (2002). Revised estimates of human cochlear tuning from otoacoustic and behavioral measurements. Proceedings of the National Academy of Sciences of the United States of America, 99(5), 3318–3323.

    Article  PubMed  CAS  Google Scholar 

  • Spirou, G., Rager, J., & Manis, P. (2005). Convergence of auditory-nerve fiber projections onto globular bushy cells. Neuroscience, 136(3), 843–863.

    Article  PubMed  CAS  Google Scholar 

  • Strong, S. P., de Ruyter van Steveninck, R., Bialek, W., & Koberle, R. (1998). Entropy and information in neural spike trains. Physical Review Letters, 80, 197–200.

    Article  CAS  Google Scholar 

  • Strube, H. W. (1985). A computionally efficient basilar-membrane model. Acustica, 58, 207–214.

    Google Scholar 

  • Sumner, C. J., Lopez-Poveda, E. A., O’Mard, L. P., & Meddis, R. (2002). A revised model of the inner-hair cell and auditory-nerve complex. Journal of the Acoustical Society of America, 111, 2178–2188.

    Article  PubMed  Google Scholar 

  • von Helmholtz, H. L. F. (1863). Die Lehre von den Tonempfindungen als physiologische Grundlage für die Theorie der Musik. In F. Vieweg & S. Braunschweig (Eds.), Published in translation (1954) On the sensations of tone as a physiological basis for the theory of music (6th ed., Vol. 1913, 668 pp.) New York: Dover.

  • Wang, H., Gelbart, D., Hirsch, H. G., & Hemmert, W. (2008). The value of auditory offset adaptation and appropriate acoustic modeling. In Interspeech, proceedings of the 9th annual conference of the international speech communication association (pp. 902–905). ISSN 1990-9772.

  • Wang, H., & Hemmert, W. (2007). Speech coding and information processing by auditory neurons. In Interspeech, proceedings of the 8th annual conference of the international speech communication association (pp. 426–429). ISSN 1990-9772.

  • Wang, H., Holmberg, M., & Hemmert, W. (2006). Auditory information coding by cochlear nucleus onset neurons. In Proc. IEEE ICASSP’2006 (pp. 129–132). Toulouse, France.

  • Yu, Y., Liu, F., Wang, W., & Lee, T. S. (2004). Optimal synchrony state for maximal information transmission. NeuroReport, 15, 1605–1610.

    Article  PubMed  Google Scholar 

  • Zhang, X., & Carney, L. H. (2005). Analysis of models for the synapse between the inner hair cell and the auditory nerve. Journal of the Acoustical Society of America, 118, 1540–1553.

    Article  PubMed  Google Scholar 

Download references

Acknowledgement

This work was funded by the German Federal Ministry of Education and Research (reference numbers 01GQ0441 and 01GQ0443).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Werner Hemmert.

Additional information

Action Editor: Catherine E. Carr

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

(PDF 486 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, H., Isik, M., Borst, A. et al. Auditory information coding by modeled cochlear nucleus neurons. J Comput Neurosci 30, 529–542 (2011). https://doi.org/10.1007/s10827-010-0276-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-010-0276-x

Keywords

Navigation