Skip to main content
Log in

A metric space approach to the information channel capacity of spike trains

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

A novel method is presented for calculating the information channel capacity of spike trains. This method works by fitting a χ-distribution to the distribution of distances between responses to the same stimulus: the χ-distribution is the length distribution for a vector of Gaussian variables. The dimension of this vector defines an effective dimension for the noise and by rephrasing the problem in terms of distance based quantities, this allows the channel capacity to be calculated. As an example, the capacity is calculated for a data set recorded from auditory neurons in zebra finch.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anderson, T. W., & Darling, D. A. (1952). Asymptotic theory of certain ‘goodness-of-fit’ criteria based on stochastic processes. Annals of Mathematical Statistics, 23, 193–212.

    Article  Google Scholar 

  • Bialek, W., Rieke, F., de Ruyter van Steveninck, R. R., & Warland, D. (1991). Reading a neural code. Science, 252, 1854–1857.

    Article  CAS  PubMed  Google Scholar 

  • Borst, A., & Theunissen, F. (1999). Information theory and neural coding. Nature Neuroscience, 2, 947–957.

    Article  CAS  PubMed  Google Scholar 

  • Cover, T. M., & Thomas J. A. (1991). Elements of information theory. Wiley.

  • De Ruyter Van Steveninck, R. R., Lewen, G. D., Strong, S. P., Koberle, R., & Bialek, W. (1997). Reproducibility and variability in neural spike trains. Science, 275, 1805–1808.

    Article  CAS  PubMed  Google Scholar 

  • Dubbs, A. J., Seiler, B. A., & Magnasco, M. O. (2009). A fast \(\mathcal{L}_p\) spike alignment metric. arxiv/0907.3137.

  • Houghton, C. (2009a). A comment on ‘a fast l_p spike alignment metric’ by A. J. Dubbs, B. A. Seiler, & M. O. Magnasco. arxiv:0907.3137, arxiv/0908.1260.

  • Houghton, C. (2009b). Studying spike trains using a van Rossum metric with a synapses-like filter. Journal of Computational Neuroscience, 26, 149–155.

    Article  PubMed  Google Scholar 

  • Houghton, C., & Victor, J. (2010). Measuring representational distances—The spike-train metrics approach. In N. Kriegeskorte, G. Kreiman (Eds.), Understanding visual population codes – toward a common multivariate framework for cell recording and functional imaging. MIT Press (in press).

  • Johnson, D. H. (2003). Dialogue concerning neural coding and information theory. http://www.ece.rice.edu/~dhj/dialog.pdf.

  • Narayan, R., Graña, G., & Sen, K. (2006). Distinct time scales in cortical discrimination of natural sounds in songbirds. Journal of Neurophysiology, 96, 252–258.

    Article  PubMed  Google Scholar 

  • Rieke, F., Warland, D., De Ruyter Van Steveninck, R. R., & Bialek, W. (1999). Spikes: Exploring the neural code. MIT Computational Neuroscience Series.

  • Rubin, I. (1974a). Information rates and data-compression schemes for Poisson processes. IEEE Transactions on Information Theory, 20, 200–210.

    Article  Google Scholar 

  • Rubin, I. (1974b). Rate distortion functions for non-homogeneous Poisson processes. IEEE Transactions on Information Theory, 20, 669–672.

    Article  Google Scholar 

  • Shannon, C. E. (1948). A mathematical theory of communication. Bell Systems Technical Journal, 27, 379–423, 623–656.

    Google Scholar 

  • Silverman, B. W. (1986). Density estimation. London: Chapman and Hall.

    Google Scholar 

  • Stephens, M. A. (1974). EDF statistics for goodness of fit and some comparisons. Journal of the American Statistical Association, 69, 730–737.

    Article  Google Scholar 

  • van Rossum, M. (2001). A novel spike distance. Neural Computation, 13, 751–763.

    Article  PubMed  Google Scholar 

  • Victor, J. D. (2002). Binless strategies for estimation of information from neural data. Physical Review E, 66, 051903.

    Article  Google Scholar 

  • Victor, J. D. (2005). Spike train metrics. Current Opinion in Neurobiology, 15, 585–592.

    Article  CAS  PubMed  Google Scholar 

  • Victor, J. D., & Purpura, K. P. (1996). Nature and precision of temporal coding in visual cortex: A metric-space analysis. Journal of Neurophysiology, 76, 1310–1326.

    CAS  PubMed  Google Scholar 

  • Wang, L., Narayan, R., Graña, G., Shamir, M., & Sen, K. (2007). Cortical discrimination of complex natural stimuli: Can single neurons match behavior? Journal of Neuroscience, 27, 582–589.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

JBG wishes to thanks the Irish Research Council of Science, Engineering and Technology for an Embark Postgraduate Research Scholarship. CJH wishes to thank Science Foundation Ireland for Research Frontiers Programme grant 08/RFP/MTH1280. They are grateful to Garrett Greene, Louis Aslett and Daniel McNamee for useful discussion and to Kamal Sen for the use of the data analysed here.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Conor J. Houghton.

Additional information

Action Editor: Aurel A. Lazar

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gillespie, J.B., Houghton, C.J. A metric space approach to the information channel capacity of spike trains. J Comput Neurosci 30, 201–209 (2011). https://doi.org/10.1007/s10827-010-0286-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-010-0286-8

Keywords

Navigation