Skip to main content

Advertisement

Log in

Spiking neural network simulation: memory-optimal synaptic event scheduling

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Spiking neural network simulations incorporating variable transmission delays require synaptic events to be scheduled prior to delivery. Conventional methods have memory requirements that scale with the total number of synapses in a network. We introduce novel scheduling algorithms for both discrete and continuous event delivery, where the memory requirement scales instead with the number of neurons. Superior algorithmic performance is demonstrated using large-scale, benchmarking network simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Notes

  1. Results using MOSES D were first presented at SfN 2005.

  2. http://senselab.med.yale.edu/senselab/modeldb

References

  • Brette, R., Rudolph, M., Carnevale, T., Hines, M., Beeman, D., Bower, J. M., et al. (2007). Simulation of networks of spiking neurons: A review of tools and strategies. Journal of Computational Neuroscience, 23(3), 349–398.

    Article  PubMed  Google Scholar 

  • Brown, R. (1988). Calendar queues: A fast 0(1) priority queue implementation for the simulation event set problem. Communications of the ACM, 31(10), 1220–1227.

    Article  Google Scholar 

  • Claverol, E. T., Brown, A. D., & Chad, J. E. (2002). Discrete simulation of large aggregates of neurons. Neurocomputing, 47(1–4), 277–297.

    Article  Google Scholar 

  • Destexhe, A. (2009). Self-sustained asynchronous irregular states and up-down states in thalamic, cortical and thalamocortical networks of nonlinear integrate-and-fire neurons. Journal of Computational Neuroscience, 27(3), 493–506.

    Article  PubMed  Google Scholar 

  • Goodman, D. & Brette, R. (2008). Brian: A simulator for spiking neural networks in python. Front Neuroinformatics, 2, 5–5.

    PubMed  Google Scholar 

  • Humphries, M. D., Wood, R., & Gurney, K. (2009). Dopamine-modulated dynamic cell assemblies generated by the gabaergic striatal microcircuit. Neural Networks, 22(8), 1174–1188.

    Article  PubMed  Google Scholar 

  • Izhikevich, E. M. (2003). Simple model of spiking neurons. IEEE Transactions on Neural Networks, 14(6), 1569–1572.

    Article  PubMed  CAS  Google Scholar 

  • Izhikevich, E. M. (2007). Dynamical systems in n euroscience: The g eometry of excitability and b ursting. The MIT press.

  • Izhikevich, E. M., & Edelman, G. M. (2008). Large-scale model of mammalian thalamocortical systems. Proceedings of the National Academy of Sciences of the United States of America, 105(9), 3593–3598.

    Article  PubMed  CAS  Google Scholar 

  • Mattia, M., & Del Giudice, P. (2000). Efficient event-driven simulation of large networks of spiking neurons and dynamical synapses. Neural Computation, 12(10), 2305–2329.

    Article  PubMed  CAS  Google Scholar 

  • Morrison, A., Mehring, C., Geisel, T., Aertsen, A. D., & Diesmann, M. (2005). Advancing the boundaries of high-connectivity network simulation with distributed computing. Neural Computation, 17(8), 1776–1801.

    Article  PubMed  Google Scholar 

  • Morrison, A., Straube, S., Plesser, H. E., & Diesmann, M. (2007). Exact subthreshold integration with continuous spike times in discrete-time neural network simulations. Neural Computation, 19(1), 47–79.

    Article  PubMed  Google Scholar 

  • Nageswaran, J. M., Dutt, N., Krichmar, J. L., Nicolau, A., & Veidenbaum, A. V. (2009). A configurable simulation environment for the efficient simulation of large-scale spiking neural networks on graphics processors. Neural Networks, 22(5–6), 791–800.

    Article  PubMed  Google Scholar 

  • Ros, E., Carrillo, R., Ortigosa, E. M., Barbour, B., & Agís, R. (2006). Event-driven simulation scheme for spiking neural networks using look-up tables to characterize neuronal dynamics. Neural Comput, 18(12), 2959–2993.

    Article  PubMed  Google Scholar 

  • Rushton, W. A. (1951). A theory of the effects of fibre size in medullated nerve. Journal of Physiology, 115(1), 101–22.

    PubMed  CAS  Google Scholar 

  • Stewart, R. D., & Bair, W. (2009). Spiking neural network simulation: Numerical integration with the Parker-Sochacki method. Journal of Computational Neuroscience, 27(1), 115–133.

    Article  PubMed  Google Scholar 

  • Vogels, T. P., & Abbott, L. F. (2005). Signal propagation and logic gating in networks of integrate-and-fire neurons. Journal of Neuroscience, 25(46), 10786–10795.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert D. Stewart.

Additional information

Action Editor: Upinder Singh Bhalla

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stewart, R.D., Gurney, K.N. Spiking neural network simulation: memory-optimal synaptic event scheduling. J Comput Neurosci 30, 721–728 (2011). https://doi.org/10.1007/s10827-010-0288-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-010-0288-6

Keywords

Navigation