Skip to main content
Log in

Control of neural synchrony using channelrhodopsin-2: a computational study

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

In this paper, we present an optical stimulation based approach to induce 1:1 in-phase synchrony in a network of coupled interneurons wherein each interneuron expresses the light sensitive protein channelrhodopsin-2 (ChR2). We begin with a transition rate model for the channel kinetics of ChR2 in response to light stimulation. We then define “functional optical time response curve (fOTRC)” as a measure of the response of a periodically firing interneuron (transfected with ChR2 ion channel) to a periodic light pulse stimulation. We specifically consider the case of unidirectionally coupled (UCI) network and propose an open loop control architecture that uses light as an actuation signal to induce 1:1 in-phase synchrony in the UCI network. Using general properties of the spike time response curves (STRCs) for Type-1 neuron model (Ermentrout, Neural Comput 8:979-1001, 1996) and fOTRC, we estimate the (open loop) optimal actuation signal parameters required to induce 1:1 in-phase synchrony. We then propose a closed loop controller architecture and a controller algorithm to robustly sustain stable 1:1 in-phase synchrony in the presence of unknown deviations in the network parameters. Finally, we test the performance of this closed-loop controller in a network of mutually coupled (MCI) interneurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abarbanel, H., Gibb, L., Huerta, R., & Rabinovich, M. (2003). Biophysical model of synaptic plasticity dynamics. Biological Cybernetics, 89, 214–226.

    Article  PubMed  Google Scholar 

  • Bartos, M., Vida, I., & Jonas, P. (2007). Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks. Nature Reviews. Neuroscience, 45–56.

  • Beierlein, M., Gibson, J. R., & Connors, B. W. (2000). A network of electrically coupled interneurons drives synchronized inhibition in neocortex. Nature Neuroscience, 3(9), 904–910. doi:10.1038/78809.

    Article  PubMed  CAS  Google Scholar 

  • Bennett, M. V. L., & Zukin, R. S. (2004). Electrical coupling and neuronal synchronization in the mammalian brain. Neuron, 41(4), 495–511.

    Article  PubMed  CAS  Google Scholar 

  • Boyden, E. S., Zhang, F., Bamberg, E., Nagel, G., & Deisseroth, K. (2005). Millisecond-timescale, genetically targeted optical control of neural activity. Nature Neuroscience, 8(9), 1263–1268. doi:10.1038/nn1525.

    Article  PubMed  CAS  Google Scholar 

  • Buzsaki, G. (2006). Rhythms of the brain. Oxford University Press.

  • Cardin, J. A., Carlén, M., Meletis, K., Knoblich, U., Zhang, F., Deisseroth, K., et al. (2009). Driving fast-spiking cells induces gamma rhythm and controls sensory responses. Nature, 459(7247), 663–667. doi:10.1038/nature08002.

    Article  PubMed  CAS  Google Scholar 

  • Chow, C., White, J., Ritt, J., & Kopell, N. (1998). Frequency control in synchronized networks of inhibitory neurons. Journal of Computational Neuroscience, 5, 407–420.

    Article  PubMed  CAS  Google Scholar 

  • Colwyn, T., & Stuart, D. (2005). Disorganized rhythm and synchrony: Early signs of autism and rett syndrome. Brain & Development, 27(Suppl 1), S25–S34. doi:10.1016/j.braindev.2005.03.016

    Google Scholar 

  • Crook, S., Ermentrout, G., & Vanier, M. (1997). The role of axonal delay in the synchronization of networks of coupled cortical oscillators. Journal of Computational Neuroscience, 4(2), 161–172.

    Article  PubMed  CAS  Google Scholar 

  • Cui, J., Canavier, C. C., & Butera, R. J. (2009). Functional phase response curves: A method for understanding synchronization of adapting neurons. Journal of Neurophysiology, 102(1), 387–398. doi:10.1152/jn.00037.2009.

    Article  PubMed  Google Scholar 

  • Danzl, P., Nabi, A., & Moehlis, J. (2010). Charged balanced spike timing control for phase models of spiking neurons. Discrete and Continuous Dynamical Systems, 28, 1413–1435.

    Article  Google Scholar 

  • Deisseroth, K., Feng, G., Majewska, A. K., Miesenböck, G., Ting, A., & Schnitzer, M. J. (2006). Next-generation optical technologies for illuminating genetically targeted brain circuits. Journal of Neuroscience, 26(41), 10380–10386. doi:10.1523/JNEUROSCI.3863-06.2006.

    Article  PubMed  CAS  Google Scholar 

  • Ermentrout, B. (1996). Type 1 membranes, phase resetting curves and synchrony. Neural Computation, 8, 979–1001.

    Article  PubMed  CAS  Google Scholar 

  • Ernst, U., Pawelzik, K., & Geisel, T. (1995). Synchronization induced by temporal delays in pulse-coupled oscillators. Physical Review Letters, 74, 1570–1573.

    Article  PubMed  CAS  Google Scholar 

  • Fisahn, A., Pike, F., Buhl, E., & Paulsen, O. (1998). Cholinergic induction of network oscillations at 40 hz in the hippocampus in vitro. Nature, 394, 186–189.

    Article  PubMed  CAS  Google Scholar 

  • Galarreta, M., & Hestrin, S. (2001). Spike transmission and synchrony detection in networks of gabaergic interneurons. Science, 292(5525), 2295–2299. doi:10.1126/science.1061395.

    Article  PubMed  CAS  Google Scholar 

  • Gradinaru, V., Mogri, M., Thompson, K. R., Henderson, J. M., & Deisseroth, K. (2009). Optical deconstruction of parkinsonian neural circuitry. Science, 324(5925), 354–359. doi:10.1126/science.1167093.

    Article  PubMed  CAS  Google Scholar 

  • Gunaydin, L., Yizhar, O., Berndt, A., Sohal, V., Deisseroth, K., & Hegemann, P. (2010). Ultrafast optogenetic control. Nature Neuroscience, 13(3), 387–392. doi:10.1038/nn.2495.

    Article  PubMed  CAS  Google Scholar 

  • Hegemann, P., Ehlenbeck, S., & Gradmann, D. (2005). Multiple photocycles of channelrhodopsin. Biophysical Journal, 89(6), 3911–3918. doi:10.1529/biophysj.105.069716.

    Article  PubMed  CAS  Google Scholar 

  • Huber, D., Petreanu, L., Ghitani, N., Ranade, S., Hromádka, T., Mainen, Z., et al. (2008). Sparse optical microstimulation in barrel cortex drives learned behaviour in freely moving mice. Nature, 451(7174), 61–64. doi:10.1038/nature06445.

    Article  PubMed  CAS  Google Scholar 

  • Jeong, H., & Gutkin, B. (2007). Synchrony of neuronal oscillations controlled by gabaergic reversal potentials. Neural Computation, 19, 706–729.

    Article  PubMed  Google Scholar 

  • Khalil, H. (2001). Nonlinear systems (3rd ed.). Prentice Hall.

  • Lewis, T. J., & Rinzel, J. (2003). Dynamics of spiking neurons connected by both inhibitory and electrical coupling. Journal of Computational Neuroscience, 14(3), 283–309.

    Article  PubMed  Google Scholar 

  • Netoff, T. I., Acker, C. D., Bettencourt, J. C., & White, J. A. (2005). Beyond two-cell networks: Experimental measurement of neuronal responses to multiple synaptic inputs. Journal of Computational Neuroscience, 18(3), 287–295. doi:10.1007/s10827-005-0336-9.

    Article  PubMed  Google Scholar 

  • Nikolic, K., Grossman, N., Grubb, M., Burrone, J., Toumazou, C., & Degenaar, P. (2009). Photocycles of channelrhodopsin-2. Photochemistry and Photobiology, 85(1), 400–411. doi:10.1111/j.1751-1097.2008.00460.x.

    Article  PubMed  CAS  Google Scholar 

  • Oprisan, S., & Canavier, C. (2001). Stability analysis of ring of pulse coupled oscillators: The effect of phase resetting in the second cycle after the pulse is important at synchrony and for long pulses. Differential Equations and Dynamical Systems, 9, 243–258.

    Google Scholar 

  • Roelfsema, P., Engel, A., Konig, P., & Singer, W. (1997). Visuomotor integration is associated with zero time-lag synchronization among cortical areas. Nature 385(6612), 157–161.

    Article  PubMed  CAS  Google Scholar 

  • Schiff, S. (2009). Kalman meets neuron: The emerging intersection of controltheory with neuroscience. In Conf Proc IEEE Eng Med Biol Soc (pp. 3318–3321).

  • Skinner, F. K., Chung, J. Y. J., Ncube, I., Murray, P. A., & Campbell, S. A. (2005). Using heterogeneity to predict inhibitory network model characteristics. Journal of Neurophysiology, 93(4), 1898–907. doi:10.1152/jn.00619.2004.

    Article  PubMed  CAS  Google Scholar 

  • Strogatz, S. (2001). Nonlinear dynamics and chaos with application to physics, biology, chemistry and engineering. Westview Press.

  • Swadlow, H. A., Beloozerova, I. N., & Sirota, M. G. (1998). Sharp, local synchrony among putative feed-forward inhibitory interneurons of rabbit somatosensory cortex. Journal of Neurophysiology, 79(2), 567–582.

    PubMed  CAS  Google Scholar 

  • Symond, M. P., Symond, M. B., Harris, A. W. F., Gordon, E., & Williams, L. M. (2005). “Gamma synchrony” in first-episode schizophrenia: A disorder of temporal connectivity? American Journal of Psychiatry, 162(3), 459–65. doi:10.1176/appi.ajp.162.3.459.

    Article  PubMed  Google Scholar 

  • Talathi, S., Hwang, D., Carney, P., & Ditto, W. (2010). Synchrony with shunting inhibition in a feedforward inhibitory network. Journal of Computational Neuroscience, 28(2), 305–321. doi:10.1007/s10827-009-0210-2.

    Article  PubMed  Google Scholar 

  • Talathi, S., Hwang, D., & Ditto, W. (2008). Spike timing dependent plasticity promotes synchrony of inhibitory networks in the presence of heterogeneity. Journal of Computational Neuroscience, 25, 262–281.

    Article  PubMed  Google Scholar 

  • Tønnesen, J., Sørensen, A. T., Deisseroth, K., Lundberg, C., & Kokaia, M. (2009). Optogenetic control of epileptiform activity. Proceedings of the National Academy of Sciences of the United States of America, 106(29), 12162–12167. doi:10.1073/pnas.0901915106.

    Article  PubMed  Google Scholar 

  • Traub, R., Whittington, M., Stanford, I., & Jefferys, J. (1996). A mechanism for generation of long-range synchronous fast oscillations in the cortex. Nature, 383(6601), 621–624.

    Article  PubMed  CAS  Google Scholar 

  • Uhlhaas, P. J., Roux, F., Rodriguez, E., Rotarska-Jagiela, A., & Singer, W. (2010). Neural synchrony and the development of cortical networks. Trends in Cognitive Sciences, 14(2), 72–80. doi:10.1016/j.tics.2009.12.002.

    Article  PubMed  Google Scholar 

  • Uhlhaas, P. J., & Singer, W. (2006). Neural synchrony in brain disorders: Relevance for cognitive dysfunctions and pathophysiology. Neuron, 52(1), 155–168. doi:10.1016/j.neuron.2006.09.020.

    Article  PubMed  CAS  Google Scholar 

  • vanVreeswijk, C., Abbott, L., & Ermentrout, B. (1994). When inhibition and not excitation synchronizes neural firing. Journal of Computational Neuroscience, 1(313—321).

    Article  PubMed  Google Scholar 

  • Varela, F., Lachaux, J. P., Rodriguez, E., & Martinerie, J. (2001). The brainweb: Phase synchronization and large-scale integration. Nature Reviews. Neuroscience, 2(4), 229–239. doi:10.1038/35067550.

    Article  PubMed  CAS  Google Scholar 

  • Wang, X., & Buzsaki, G. (1996). Gamma oscillation by synaptic inhibition in a hippocampal interneuronal network model. Journal of Neuroscience, 16, 6402–6413.

    PubMed  CAS  Google Scholar 

  • Wang, X., & Rinzel, J. (1992). Alternating and synchronous rhythms in reciprocally inhibitory model neurons. Neural Computation, 4, 84–97.

    Article  Google Scholar 

  • White, A., Chow, C., Ritt, J., Trevino, C., & Kopell, N. (1998). Synchronization and oscillatory dynamics in heterogeneous, mutually inhibited neurons. Journal of Computational Neuroscience, 5, 5–16.

    Article  PubMed  CAS  Google Scholar 

  • Whittington, M., Traub, R., & Jefferys, J. (1995). Synchronized oscillations in interneuron networks driven by metabotropic glutamate receptor activation. Nature, 373, 612–615.

    Article  PubMed  CAS  Google Scholar 

  • Zhigulin, V. P., Rabinovich, M. I., Huerta, R., & Abarbanel, H. D. I. (2003). Robustness and enhancement of neural synchronization by activity-dependent coupling. Physical Review, E, Statistical, Nonlinear and Soft Matter Physics, 67(2 Pt 1), 021,901.

    Google Scholar 

Download references

Acknowledgements

This research was supported through the intramural seed grant on Computational Biology from the University of Florida. SST and PRC were partially supported from the Wilder Center of Excellence for Epilepsy Research and the Childrens Miracle Network. PPK was partially supported by the Eckis Professor Endowment at the University of Florida. We acknowledge constructive feedback from Dr Willam Ogle, Dr Jason Frazier, Erin Boykin and Shivakeshavan Ratnadurai.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sachin S. Talathi.

Additional information

Action Editor: Carson C. Chow

Rights and permissions

Reprints and permissions

About this article

Cite this article

Talathi, S.S., Carney, P.R. & Khargonekar, P.P. Control of neural synchrony using channelrhodopsin-2: a computational study. J Comput Neurosci 31, 87–103 (2011). https://doi.org/10.1007/s10827-010-0296-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-010-0296-6

Keywords

Navigation