Skip to main content
Log in

Hallucinogen persisting perception disorder in neuronal networks with adaptation

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

We study the spatiotemporal dynamics of neuronal networks with spike frequency adaptation. In particular, we compare the effects of adaptation being either a linear or nonlinear function of neural activity. We find that altering parameters controlling the strength of synaptic connections in the network can lead to spatially structured activity suggestive of symptoms of hallucinogen persisting perception disorder (HPPD). First, we study how both networks track spatially homogeneous flickering stimuli, and find input is encoded as continuous at lower flicker frequencies when the network’s synapses exhibit more net excitation. Mainly, we study instabilities of stimulus-driven traveling pulse solutions, representative of visual trailing phenomena common to HPPD patients. Visual trails are reported as discrete afterimages in the wake of a moving input. Thus, we analyze several solutions arising in response to moving inputs in both networks: an ON state, stimulus-locked pulses, and traveling breathers. We find traveling breathers can arise in both networks when an input moves beyond a critical speed. These possible neural substrates of visual trails occur at slower speeds when the modulation of synaptic connectivity is increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  • Abraham, H. D. (1983). Visual phenomenology of the LSD flashback. Archives of General Psychiatry, 40(8), 884–889.

    Article  PubMed  CAS  Google Scholar 

  • Abraham, H. D., & Duffy, F. H. (1996). Stable quantitative EEG difference in post-LSD visual disorder by split-half analysis: Evidence for disinhibition. Psychiatry Research, 67(3), 173–187.

    Article  PubMed  CAS  Google Scholar 

  • Abraham, H. D., & Duffy, F. H. (2001). EEG coherence in post-LSD visual hallucinations. Psychiatry Research, 107(3), 151–163.

    Article  PubMed  CAS  Google Scholar 

  • Abraham, H. D., & Wolf, E. (1988). Visual function in past users of LSD: Psychophysical findings. Journal of Abnormal Psychology, 97(4), 443–447.

    Article  PubMed  CAS  Google Scholar 

  • Amari, S. (1977). Dynamics of pattern formation in lateral-inhibition type neural fields. Biological Cybernetics, 27(2), 77–87.

    Article  PubMed  CAS  Google Scholar 

  • Ben-Yishai, R., Bar-Or, R. L., & Sompolinsky, H. (1995). Theory of orientation tuning in visual cortex. Proceedings of the National Academy of Sciences of the United States of America, 92(9), 3844–3848.

    Article  PubMed  CAS  Google Scholar 

  • Ben-Yishai, R., Hansel, D., & Sompolinsky, H. (1997). Traveling waves and the processing of weakly tuned inputs in a cortical network module. Journal of Computational Neuroscience, 4(1), 57–77.

    Article  PubMed  CAS  Google Scholar 

  • Benda, J., & Herz, A. V. M. (2003). A universal model for spike-frequency adaptation. Neural Computation, 15(11), 2523–2564.

    Article  PubMed  Google Scholar 

  • Boyer, E. W., & Shannon, M. (2005). The serotonin syndrome. New England Journal of Medicine, 352(11), 1112–1120.

    Article  PubMed  CAS  Google Scholar 

  • Bressloff, P., Cowan, J., Golubitsky, M., Thomas, P., & Wiener, M. (2001). Geometric visual hallucinations, Euclidean symmetry and the functional architecture of striate cortex. Proceedings of the Royal Society of London. Series B, Biological Sciences, 356(1407), 299–330.

    CAS  Google Scholar 

  • Bressloff, P. C., & Cowan, J. D. (2002). An amplitude equation approach to contextual effects in visual cortex. Neural Computation, 14(3), 493–525.

    Article  PubMed  Google Scholar 

  • Bressloff, P. C., & Kilpatrick, Z. P. (2011). Two-dimensional bumps in piecewise smooth neural fields with synaptic depression. SIAM Journal of Applied Mathematics, 71(2), 379–408.

    Article  Google Scholar 

  • Chervin, R. D., Pierce, P. A., & Connors, B. W. (1988). Periodicity and directionality in the propagation of epileptiform discharges across neocortex. Journal of Neurophysiology, 60(5), 1695–1713.

    PubMed  CAS  Google Scholar 

  • Chossat, P., & Faugeras, O. (2009). Hyperbolic planforms in relation to visual edges and textures perception. PLoS Computational Biology, 5(12), e1000625.

    Article  Google Scholar 

  • Cohen, S., & Ditman, K. S. (1963). Prolonged adverse reactions to lysergic acid diethylamide. Archives of General Psychiatry, 8(5), 475–480.

    Article  PubMed  CAS  Google Scholar 

  • Coombes, S. (2005). Waves, bumps, and patterns in neural field theories. Biological Cybernetics, 93(2), 91–108.

    Article  PubMed  CAS  Google Scholar 

  • Coombes, S., & Owen, M. R. (2004). Evans functions for integral neural field equations with Heaviside firing rate function. SIAM Journal on Applied Dynamical Systems, 3(4), 574–600.

    Article  Google Scholar 

  • Coombes, S., & Owen, M. R. (2005). Bumps, breathers, and waves in a neural network with spike frequency adaptation. Physics Review Letters, 94(14), 148102.

    Article  CAS  Google Scholar 

  • Coombes, S., & Schmidt, H. (2010). Neural fields with sigmoidal firing rates: Approximate solutions. Discrete and Continuous Dynamical Systems A, 28(4), 1369–1379.

    Article  Google Scholar 

  • Dubois, J., & VanRullen, R. (2011). Visual trails: Do the doors of perception open periodically? PLos Biology, 9(5), e1001056.

    Article  PubMed  CAS  Google Scholar 

  • Ermentrout, G. B., & Cowan, J. D. (1979). A mathematical theory of visual hallucination patterns. Biological Cybernetics, 34(3), 137–50.

    Article  PubMed  CAS  Google Scholar 

  • Ermentrout, G. B., Jalics, J. Z., & Rubin, J. E. (2010). Stimulus-driven traveling solutions in continuum neuronal models with a general smooth firing rate function. SIAM Journal of Applied Mathematics, 70(8), 3039–3064.

    Article  Google Scholar 

  • Faugeras, O., Veltz, R., & Grimbert, F. (2009). Persistent neural states: Stationary localized activity patterns in the nonlinear continuous n-population, q-dimensional neural networks. Neural Computation, 21, 147–187.

    Article  PubMed  Google Scholar 

  • Folias, S. E., & Bressloff, P. C. (2004). Breathing pulses in an excitatory neural network. SIAM Journal on Applied Dynamical Systems, 3(3), 378–407.

    Article  Google Scholar 

  • Folias, S. E., & Bressloff, P. C. (2005a). Breathers in two-dimensional neural media. Physics Review Letters, 95(20), 208107.

    Article  CAS  Google Scholar 

  • Folias, S. E., & Bressloff, P. C. (2005b). Stimulus-locked traveling waves and breathers in an excitatory neural network. SIAM Journal of Applied Mathematics, 65(6), 2067–2092.

    Article  Google Scholar 

  • Fontenelle, L. F. (2008). Topiramate-induced palinopsia. Journal of Neuropsychiatry and Clinical Neurosciences, 20(2), 249–250.

    Article  PubMed  Google Scholar 

  • Frosch, W. A., Robbins, E. S., & Stern, M. (1965). Untoward reactions to lysergic acid diethylamide (LSD) resulting in hospitalization. New England Journal of Medicine, 273, 1235–1239.

    Article  PubMed  CAS  Google Scholar 

  • Guo, Y., & Chow, C. C. (2005). Existence and stability of standing pulses in neural networks: I. Existence. SIAM Journal on Applied Dynamical Systems, 4(2), 217–248.

    Article  Google Scholar 

  • Halpern, J. H., & Pope, H. G. (2003). Hallucinogen persisting perception disorder: What do we know after 50 years? Drug and Alcohol Dependence, 69(2), 109–119.

    Article  PubMed  Google Scholar 

  • Hansel, D., & Sompolinsky, H. (1998). Modeling feature selectivity in local cortical circuits. In C. Koch, & I. Segev (Eds.), Methods in neuronal modeling: From ions to networks (chap. 13, pp. 499–567). Cambridge: MIT.

    Google Scholar 

  • Horowitz, M. L. (1969). Flashbacks: Recurrent intrusive images after the use of LSD. American Journal of Psychiatry, 126(4), 565–569.

    PubMed  CAS  Google Scholar 

  • Huang, X., Troy, W. C., Yang, Q., Ma, H., Laing, C. R., Schiff, S. J., et al. (2004). Spiral waves in disinhibited mammalian neocortex. Journal of Neuroscience, 24(44), 9897–9902.

    Article  PubMed  CAS  Google Scholar 

  • Hubel, D. H., & Wiesel, T. N. (1977). Ferrier lecture. Functional architecture of macaque monkey visual cortex. Proceedings of the Royal Society of London. Series B, Biological Sciences, 198(1130), 1–59.

    Article  PubMed  CAS  Google Scholar 

  • Ihde-Scholl, T., & Jefferson, J. W. (2001). Mitrazapine-associated palinopsia. Journal of Clinical Psychiatry, 62(5), 373.

    Article  PubMed  CAS  Google Scholar 

  • Kawasaki, A., & Purvin, V. (1996). Persistent palinopsia following ingestion of lysergic acid diethylamide (LSD). Archives of Ophthalmology, 114(1), 47–50.

    Article  PubMed  CAS  Google Scholar 

  • Kilpatrick, Z. P., & Bressloff, P. C. (2010a). Binocular rivalry in a competitive neural network with synaptic depression. SIAM Journal on Applied Dynamical Systems, 9, 1303–1347.

    Article  Google Scholar 

  • Kilpatrick, Z. P., & Bressloff, P. C. (2010b). Effects of synaptic depression and adaptation on spatiotemporal dynamics of an excitatory neuronal network. Physica D, 239(9), 547–560. Mathematical neuroscience.

    Article  Google Scholar 

  • Kilpatrick, Z. P., & Bressloff, P. C. (2010c). Stability of bumps in piecewise smooth neural fields with nonlinear adaptation. Physica D, 239(12), 1048–1060.

    Article  CAS  Google Scholar 

  • Kilpatrick, Z. P., Folias, S. E., & Bressloff, P. C. (2008). Traveling pulses and wave propagation failure in inhomogeneous neural media. SIAM Journal on Applied Dynamical Systems, 7(1), 161–185.

    Article  Google Scholar 

  • Kishimoto, K., & Amari, S. (1979). Existence and stability of local excitations in homogeneous neural fields. Journal of Mathematical Biology, 7, 303–318.

    Article  PubMed  CAS  Google Scholar 

  • Kraus, R. P. (1996). Visual “trails” with nefazodone treatment. American Journal of Psychiatry, 153(10), 1365–1366.

    PubMed  CAS  Google Scholar 

  • Laing, C. R., & Troy, W. C. (2003). PDE methods for nonlocal models. SIAM Journal on Applied Dynamical Systems, 2(3), 487–516.

    Article  Google Scholar 

  • Lerner, A. G., Finkel, B., Oyffe, I., Merenzon, I., & Sigal, M. (1998). Clonidine treatment for hallucinogen persisting perception disorder. American Journal of Psychiatry, 155(10), 1460.

    PubMed  CAS  Google Scholar 

  • Lerner, A. G., Skladman, I., Kodesh, A., Sigal, M., & Shufman, E. (2001). LSD-induced hallucinogen persisting perception disorder treated with clonazepam: Two case reports. Israel Journal of Psychiatry and Related Sciences, 38(2), 133–136.

    PubMed  CAS  Google Scholar 

  • Madison, D. V., & Nicoll, R. A. (1984). Control of the repetitive discharge of rat CA1 pyramidal neurones in vitro. Journal of Physiology, 354, 319–331.

    PubMed  CAS  Google Scholar 

  • Moskowitz, D. (1971). Use of haloperidol to reduce lsd flashbacks. Military Medicine, 136(9), 754–756.

    PubMed  CAS  Google Scholar 

  • Nichols, C. D., & Sanders-Bush, E. (2002). A single dose of lysergic acid diethylamide influences gene expression patterns within the mammalian brain. Neuropsychopharmacology, 26(5), 634–642.

    Article  PubMed  CAS  Google Scholar 

  • Oster, G. (1970) Phosphenes. Scientific American, 222(2), 82–87.

    Article  PubMed  CAS  Google Scholar 

  • Pinto, D. J., & Ermentrout, G. B. (2001). Spatially structured activity in synaptically coupled neuronal networks: I. Traveling fronts and pulses. SIAM Journal on Applied Mathematics, 62(1), 206–225.

    Article  Google Scholar 

  • Rosenthal, S. H. (1964). Persistent hallucinosis following repeated administration of hallucinogenic drugs. American Journal of Psychiatry, 121, 238–244.

    PubMed  CAS  Google Scholar 

  • Shusterman, V., & Troy, W. C. (2008). From baseline to epileptiform activity: A path to synchronized rhythmicity in large–scale neural networks. Physical Review E, 77(6), 061911.

    Article  Google Scholar 

  • Stocker, M., Krause, M., & Pedarzani, P. (1999). An apamin-sensitive Ca2 +-activated K+ current in hippocampal pyramidal neurons. Proceedings of the National Academy of Sciences of the United States of America, 96(8), 4662–4667.

    Article  PubMed  CAS  Google Scholar 

  • Troy, W. C., & Shusterman, V. (2007). Patterns and features of families of traveling waves in large-scale neuronal networks. SIAM Journal on Applied Dynamical Systems, 6(1), 263–292.

    Article  Google Scholar 

  • Tsai, P. H., & Mendez, M. F. (2009). Akinetopsia in the posterior cortical variant of Alzheimer disease. Neurology, 73(9), 731–732.

    Article  PubMed  Google Scholar 

  • Wilson, H. R., & Cowan, J. D. (1972). Excitatory and inhibitory interactions in localized populations of model neurons. Biophysics Journal, 12(1), 1–24.

    Article  CAS  Google Scholar 

  • York, L. C., & van Rossum, M. C. W. (2009). Recurrent networks with short term synaptic depression. Journal of Computational Neuroscience, 27(3), 607–620.

    Article  PubMed  Google Scholar 

  • Young, C. R. (1997). Sertraline treatment of hallucinogen persisting perception disorder. Journal of Clinical Psychiatry, 58(2), 85.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, L. (2004). Existence, uniqueness and exponential stability of traveling wave solutions of some integral differential equations arising from neuronal networks. Journal of Differential Equations, 197(1), 162–196.

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Julien Dubois for sharing with us reports from subjects regarding the specifics of visual trails due to HPPD. We also thank Henry Abraham for use of his patient’s drawing of a visual trails experience. ZPK is supported by an NSF Mathematical Sciences Postdoctoral Research Fellowship (DMS-1004422). GBE is supported by an NSF grant (DMS-0817131).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zachary P. Kilpatrick.

Additional information

Action Editor: P. Dayan

Appendices

Appendix A: ON state in system with nonlinear adaptation

In this appendix, we derive Eq. (4.3), giving the critical speed c * at which the ON state ceases to exist in the full network with nonlinear adaptation (2.2). Thus, we study the equations,

$$\begin{array}{rll} u_t &=& - u + \int_{- \pi}^{\pi} (w_0 + w_2 \cos (x-x')) \nonumber\\ && \times\,H (u(x',t)- v(x',t) - \kappa) {\rm d} x' + I_0 \cos^2 \left( \frac{x- ct}{2} \right), \nonumber \\ v_t &=& (-v + \beta H(u-v-\kappa))/ \alpha. \end{array}$$
(A.1)

Changing coordinates to the rotating frame ξ = x − ct, so u = U(ξ) and v = V(ξ), and assuming the ON state exits (U(ξ) > V(ξ) + κ), we have

$$\begin{array}{rll} -cU'( \xi ) &=& -U ( \xi ) + \int_{- \pi }^{\pi} w_0 + w_2 \cos ( \xi - \xi') {\rm d} \xi' \\ &&+\, I_0 \cos^2 \left( \frac{\xi}{2} \right), \\ -cV' ( \xi ) &=& (- V( \xi ) + \beta ) / \alpha. \end{array}$$

Solving this pair of first order differential equations by along with periodic boundary conditions yields

$$ U( \xi ) = 2 \pi w_0 + \frac{I_0}{2} + \frac{I_0 ( \cos \xi - c \sin \xi )}{2(1+ c^2)} $$
(A.2)

and V(ξ) = β. For the ON state to exist, synaptic input must be superthreshold, U(ξ) > κ + β for all ξ ∈ ( − π, π). Simply requiring this of the minimum, U(ξ m ) > κ + β, yields the following inequality

$$ 2 \pi w_0 + \frac{I_0( \sqrt{1+ c^2} - 1)}{2 \sqrt{1+c^2}} > \beta + \kappa. $$
(A.3)

We then identify the critical stimulus speed value c * at which the ON state ceases to exist as that for which the inequality (A.3) becomes a strict equality. Thus, we can solve the equality explicitly for Eq. (4.3):

$$ c_* = \sqrt{ \frac{I_0^2}{(4 \pi w_0 + I_0 - 2 ( \beta + \kappa ) )^2} - 1}, $$

so when c > c *, the ON state exists.

Appendix B: Existence of pulses in network with nonlinear adaptation

Here, we present our construction of stimulus-locked traveling pulse solutions in the network with nonlinear adaptation (2.2) and Heaviside firing rate function (2.5). Changing to traveling wave coordinates ξ = x − ct, a pulse of width Δ ∈ (0, 2 π) has superthreshold region ξ ∈ (π − Δ, π) , where we can arbitrarily select the leading edge’s location due the translation invariance of the problem. We also specify a spatial shift Δ I of the input \(I(x,t) = I_0 \cos^2 ( ( \xi + \Delta_I)/2)\). This yields

$$\begin{array}{rll} -c U'( \xi ) &=& - U( \xi ) + \int_{\pi - \Delta}^{\pi} w( \xi - \xi') {\rm d} \xi' \\ &&+\, I_0 \cos^2 \left( \frac{\xi + \Delta_I}{2} \right), \\ -c V'( \xi ) &=& (- V( \xi ) + \beta \Theta (\xi ) )/ \alpha, \end{array}$$

where

$$ \Theta ( \xi ) = \left\{ \begin{array}{ll} 1, & \xi \in ( \pi - \Delta , \pi ), \\ 0, & \xi \in ( - \pi , \pi - \Delta ). \end{array} \right. $$

Solving this set of equations with periodic boundary conditions gives

$$\begin{array}{rll} U( \xi ) &=& w_0 \Delta + \frac{I_0 [ \cos ( \xi + \Delta_I ) - c \sin ( \xi + \Delta_I ) ]}{2 (1 + c^2)} \nonumber\\ &&+\, \frac{I_0}{2} + \frac{w_2 ( \sin \xi - \sin ( \xi + \Delta))}{1+ c^2} \nonumber\\ &&+\, \frac{w_2 c ( \cos \xi - \cos ( \xi + \Delta))}{1+ c^2}, \end{array}$$
(B.1)
$$\begin{array}{rll} V(\xi ) &=& \beta \left( 1 - \frac{\displaystyle {\rm e}^{\xi/ \alpha c} - {\rm e}^{(\xi + \Delta - 2 \pi)/ \alpha c}}{\displaystyle 2 \sinh ( \pi/ \alpha c )} \right) : \xi \in ( \pi - \Delta, \pi ), \\ V( \xi ) &=& \beta \left( \frac{\displaystyle {\rm e}^{(\xi + \Delta)/ \alpha c} - {\rm e}^{\xi / \alpha c}}{\displaystyle 2 \sinh (\pi/ \alpha c )} \right) : \xi \in (- \pi , \pi - \Delta ). \end{array}$$
(B.2)

Therefore, to specify the pulse width Δ and associated shift to the input Δ I , we impose self consistency by requiring that the input current U(ξ) − V(ξ) specified by Eqs. (B.1) and (B.2) cross firing threshold κ at the leading and trailing edge of the pulse such that U(π) − V(π) = U(π − Δ) − V(π − Δ) = κ. This generates the following nonlinear system of equations

$$\begin{array}{lll} && w_0 \Delta + \frac{I_0}{2} + \frac{I_0 [c \sin \Delta_I - \cos \Delta_I]}{2(1+ c^2)} \\ &&\;+ \frac{w_2 [ \sin \Delta + c ( \cos \Delta - 1)]}{1+ c^2} = \beta \frac{{\rm e}^{\Delta/ \alpha c} - 1}{{\rm e}^{2 \pi/ \alpha c}-1} + \kappa, \\ && w_0 \Delta + \frac{I_0}{2} + \frac{I_0 [c \sin ( \Delta_I - \Delta ) - \cos ( \Delta_I - \Delta )]}{2(1+ c^2)} \\ &&\;+ \frac{w_2 [ \sin \Delta + c ( 1- \cos \Delta )]}{1+ c^2} = \beta \frac{1- {\rm e}^{-\Delta / \alpha c}}{1 - {\rm e}^{-2 \pi / \alpha c}} + \kappa. \end{array}$$

Appendix C: Stability of pulses in network with nonlinear adaptation

In this appendix, we derive the linear stability approximation for traveling pulses in the network with nonlinear adaptation. As in the case of the network with linear adaptation, we start by considering the evolution of small, smooth perturbations to the traveling pulse solution (U(ξ), V(ξ)), such that \(u( \xi , t) = U( \xi ) + \bar{\psi} ( \xi , t)\) and \(v( \xi , t) = V( \xi ) + \bar{\phi} ( \xi , t)\). Upon plugging these expression into the system (2.2) and expanding to first order in \(( \bar{\psi} , \bar{\phi} )\), we arrive at the system of linear equations

$$\begin{array}{rll} \bar{\psi}_t - c \bar{\psi}_{\xi} + \bar{\psi} &=& \int_{-\pi}^{\pi} w( \xi - \xi') H'( U( \xi' ) - V( \xi ') - \kappa ) \notag\\ &&\times\, ( \bar{\psi} ( \xi',t) - \bar{\phi} ( \xi',t)) {\rm d} \xi', \\ \bar{\phi}_t -c \bar{\phi}_{\xi} + \frac{\bar{\phi}}{\alpha} &=& \frac{\beta}{\alpha} H' ( U - V - \kappa ) ( \bar{\psi} - \bar{\phi} ). \end{array}$$

To characterize some of the spectrum of this operator, we can look, in particular, for solutions of the form \(( \bar{\psi}, \bar{\phi}) = {\rm e}^{\lambda t} ( \psi ( \xi ) , \phi ( \xi ))\) and using the identity

$$\begin{array}{rll} \frac{{\rm d} H(U - V - \kappa )}{{\rm d} U} &=& \frac{\delta ( \xi - \pi + \Delta )}{|U'(\pi- \Delta) - V'( \pi - \Delta ) |} \\ &&+ \frac{\delta ( \xi - \pi )}{|U'( \pi ) - V'( \pi )|}, \end{array}$$
(C.1)

where

$$\begin{array}{rll} U' ( \pi ) &=& \frac{w_2 [ \cos \Delta - 1 - c \sin \Delta ]}{1+c^2} \\ &&+ \frac{I_0 [ \sin \Delta_I + c \cos \Delta_I ]}{2 (1 + c^2)}, \\ U'( \pi - \Delta ) &=& \frac{w_2 [ 1- \cos \Delta - c \sin \Delta ]}{1 + c^2} \\ &&+ \frac{I_0 [ \sin ( \Delta_I - \Delta ) + c \cos ( \Delta_I - \Delta )]}{2 ( 1+ c^2)}. \end{array}$$

Due to the jump discontinuity in V′( ξ) at the threshold crossing points, either V′( π) = V  + ′( π) or V′(π) = V  ′(π), and similarly either V′(π − Δ) = V  + ′ (π − Δ) or V′(π − Δ) = V  ′(π − Δ) where

$$ V_+' ( \pi ) = - \frac{\beta (1 - {\rm e}^{(\Delta - 2 \pi )/ \alpha c})}{\alpha c ( 1- {\rm e}^{-2 \pi / \alpha c})}, $$
(C.2)
$$ V_-' ( \pi ) = \frac{\beta ( {\rm e}^{\Delta / \alpha c}-1)}{\alpha c( {\rm e}^{2 \pi / \alpha c} - 1)}, $$
(C.3)
$$ V_+' ( \pi - \Delta ) = - \frac{\beta ( {\rm e}^{- \Delta / \alpha c} - {\rm e}^{-2 \pi / \alpha c})}{\alpha c ( 1- {\rm e}^{-2 \pi / \alpha c})}, $$
(C.4)
$$ V_-'( \pi - \Delta ) = \frac{\beta ( 1 - {\rm e}^{- \Delta / \alpha c})}{\alpha c ( 1- {\rm e}^{-2 \pi / \alpha c})}. $$
(C.5)

Note that, following recent studies of the stability of spatially structured solutions in piecewise smooth neural fields (Kilpatrick and Bressloff 2010a, c; Bressloff and Kilpatrick 2011), the particular choice to make for each V′(π) and V′(π − Δ) will be assigned based the sign of the difference of perturbations (ψ(ξ) − ϕ(ξ)) in both places the expression appears in the identity (C.1). This is due to the piecewise smooth nature of V′ at the boundary of the pulse. Upon assuming a fixed sign of these perturbations, we can only calculate real eigenvalues associated with the resulting piecewise defined system. This is due to the fact that solutions ψ(ξ) − ϕ(ξ) with associated complex eigenvalues will oscillate above and below zero, violating our assumption of a fixed sign. Thus, we obtain the following system

$$\begin{array}{rll} -c \psi' + ( \lambda + 1) \psi &=& \chi_{\pi}w( \xi - \pi ) (\psi ( \pi ) - \phi ( \pi )) \\ &&+ \chi_{\pi - \Delta} w( \xi - \pi + \Delta ) \\ &&\times\,(\psi ( \pi - \Delta ) - \phi ( \pi - \Delta)) \nonumber \\ -c \phi' + ( \lambda + \alpha^{-1}) \phi &=& \frac{\beta}{\alpha} \big[ \chi_{\pi} \delta ( \xi - \pi ) (\psi ( \pi ) - \phi ( \pi )) \\ &&\quad+ \chi_{\pi - \Delta} \delta ( \xi - \pi + \Delta )\\ &&\quad\times\, (\psi ( \pi - \Delta) - \phi ( \pi - \Delta ))\big], \end{array}$$
(C.6)

where

$$ \chi_{\xi}^{-1} = \left\{ \begin{array}{ll} |U'( \xi ) - V_+'( \xi ) |, & {\rm if} \ \ \psi ( \xi ) < \phi ( \xi ), \\ |U'( \xi ) - V_-'( \xi ) |, & {\rm if} \ \ \psi ( \xi ) > \phi ( \xi ). \end{array} \right. $$
(C.7)

Therefore, the stability of the stimulus-locked traveling pulse given by Eqs. (B.1) and (B.2) can be calculated using spectrum of the eigenvalue problem (C.6). First, note that the values bounding the essential spectrum λ = − 1 and λ = − α  − 1 have infinite multiplicity and will not contribute to any instabilities. Upon omitting these value from our analysis, we can proceed by solving for the eigenfunctions. It is straightforward to do so by directly integrating both equations, treating the ψ(π) , ψ(π − Δ), ϕ(π), ϕ(π − Δ) terms as constants, to find

$$\begin{array}{rll} \psi ( \xi ) &=& \chi_{\pi} \left[ {\mathcal P}_0 + \frac{{\mathcal P}_1 \sin \xi - {\mathcal P}_2 \cos \xi }{{\mathcal D}_p} \right] ( \psi ( \pi ) - \phi ( \pi ) ) \\ && + \chi_{\pi - \Delta} \left[ {\mathcal P}_0 + \frac{{\mathcal P}_1 \sin ( \xi + \Delta ) - {\mathcal P}_2 \cos ( \xi + \Delta )}{{\mathcal D}_p} \right] \\ &&\times\,( \psi ( \pi - \Delta ) - \phi ( \pi - \Delta )), \end{array}$$
(C.8)
$$\begin{array}{rll} \phi ( \xi ) &=& \frac{\beta}{\alpha c} \bigg\{ \chi_{\pi} \left[ \frac{1}{{\mathcal P}_3} - H( \xi - \pi ) \right] ( \psi ( \pi) - \phi ( \pi ) ) \\ && \,\,\quad + \chi_{\pi - \Delta} \left[ \frac{1}{{\mathcal P}_3} - H( \xi - \pi + \Delta ) \right] {\rm e}^{\frac{\alpha \lambda + 1}{\alpha c} \Delta} \\ &&\,\,\,\quad\times\,( \psi ( \pi - \Delta ) - \phi ( \pi - \Delta )) \bigg\} {\rm e}^{\frac{\alpha \lambda + 1}{\alpha c} ( \xi - \pi )}, \end{array}$$
(C.9)

where

$$\begin{array}{rll}{\mathcal P}_0 &=& \frac{w_0}{\lambda + 1}, \\ {\mathcal P}_1 &=& w_2 c, \\ {\mathcal P}_2 &=& w_2 ( \lambda + 1), \\ {\mathcal P}_3 &=& 1 - {\rm e}^{- \frac{2 ( \alpha \lambda + 1) \pi}{\alpha c}}, \\ {\mathcal D}_p &=& ( \lambda + 1)^2 + c^2 . \end{array}$$

Requiring self-consistency of the the solutions (C.8) and (C.9), we generate the following 2 × 2 system of equations \({\boldsymbol \psi} - {\boldsymbol \phi} = {\mathcal A}_p ({\boldsymbol \psi} - {\boldsymbol \phi})\) where

$$\begin{array}{rll}{\boldsymbol \psi} &=& \left( \begin{array}{c} \psi ( \pi ) \\ \psi ( \pi - \Delta ) \end{array} \right) , \ \ \ \ \ {\boldsymbol \phi} = \left( \begin{array}{c} \phi ( \pi ) \\ \phi ( \pi - \Delta ) \end{array} \right), \\ {\mathcal A}_p &=& \left( \begin{array}{cc} {\mathcal A}_{\pi \pi} & {\mathcal A}_{\pi \Delta} \\ {\mathcal A}_{\Delta \pi} & {\mathcal A}_{\Delta \Delta} \end{array} \right), \end{array}$$
(C.10)

with

$$\begin{array}{rll}{\mathcal A}_{\pi \pi } &=& \chi_{\pi} \left[ \frac{{\mathcal D}_p {\mathcal P}_0 + {\mathcal P}_2}{{\mathcal D}_p} - \frac{\beta}{\alpha c} \left( \frac{1}{{\mathcal P}_3} - {\mathcal H}_{\pi} \right) \right], \\ {\mathcal A}_{\pi \Delta} &=& \chi_{\pi - \Delta} \left[ \frac{{\mathcal D}_p {\mathcal P}_0 - {\mathcal P}_1 \sin \Delta + {\mathcal P}_2 \cos \Delta}{{\mathcal D}_p} \right.\\ &&\quad\qquad-\left. \frac{\beta}{\alpha c} \left[ \frac{1}{{\mathcal P}_3} - 1 \right] {\rm e}^{\frac{\alpha \lambda + 1}{\alpha c} \Delta} \right], \\ {\mathcal A}_{\Delta \pi} &=& \chi_{\pi} \left[ \frac{{\mathcal D}_p {\mathcal P}_0 + {\mathcal P}_1 \sin \Delta + {\mathcal P}_2 \cos \Delta}{{\mathcal D}_p} \right.\\ &&\qquad-\left. \frac{\beta}{\alpha c} \left( \frac{1}{{\mathcal P}_3} \right) {\rm e}^{- \frac{\alpha \lambda +1}{\alpha c} \Delta} \right], \\ {\mathcal A}_{\Delta \Delta} &=& \chi_{\pi -\Delta} \left[ \frac{{\mathcal D}_p {\mathcal P}_0 + {\mathcal P}_2}{{\mathcal D}_p} - \frac{\beta}{\alpha c} \left( \frac{1}{{\mathcal P}_3} - {\mathcal H}_{\pi -\Delta} \right) \right], \end{array}$$

and

$$\begin{array}{rll}{\mathcal H}_{\pi} &=& \left\{ \begin{array}{ll} 1, & {\rm if} \ \ \psi ( \pi ) > \phi ( \pi ), \\ 0, & {\rm if} \ \ \psi ( \pi ) < \phi ( \pi ), \end{array} \right. \\ {\mathcal H}_{\pi - \Delta} &=& \left\{ \begin{array}{ll} 1, & {\rm if} \ \ \psi ( \pi - \Delta ) < \phi ( \pi - \Delta ), \\ 0, & {\rm if} \ \ \psi ( \pi - \Delta ) > \phi ( \pi - \Delta ). \end{array} \right. \end{array}$$

Now in order to examine the stability, we look for nontrivial solutions of \({\boldsymbol \psi} - {\boldsymbol \phi} = {\mathcal A}_p ({\boldsymbol \psi} - {\boldsymbol \phi})\) such that \({\mathcal E}( \lambda ) = 0\), where \({\mathcal E}( \lambda ) = \det ( {\mathcal A}_p - I)\), is the Evans function of the traveling pulse solution (B.1) and (B.2). The traveling pulse will surely not be linearly stable in the case that λ > 0 for all real λ such that \({\mathcal E}( \lambda ) = 0\). We cannot ensure linear stability, since we have omitted eigensolutions with complex eigenvalues. However, we find that, in many instances, our analysis accurately predicts the nonlinear stability of the associated stimulus-locked traveling pulse. The Evans function is then piecewise defined for four possible classes of eigenfunction: (i) ψ(π) > ϕ(π) and ψ(π − Δ) > ϕ(π − Δ); (ii) ψ(π) > ϕ(π) and ψ(π − Δ) < ϕ(π − Δ); (iii) ψ(π) < ϕ(π) and ψ(π − Δ) > ϕ(π − Δ); and (iv) ψ(π) < ϕ(π) and ψ(π − Δ) < ϕ(π − Δ).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kilpatrick, Z.P., Bard Ermentrout, G. Hallucinogen persisting perception disorder in neuronal networks with adaptation. J Comput Neurosci 32, 25–53 (2012). https://doi.org/10.1007/s10827-011-0335-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-011-0335-y

Keywords

Navigation