Skip to main content
Log in

Persistent membranous cross correlations due to the multiplicity of gates in ion channels

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Ion channels in excitable cells reveal spontaneous intermittent opening and closing. As the membrane area reduces, this stochasticity enables spontaneous firing and elevates the cell’s ability to fire at weaker stimuli. A multiple number of gates are accommodated in each individual ion channel. Here we investigate the possible impact of that gate multiplicity on the cell’s function specifically when the membrane area is of limited size. It is shown that a non-trivially persistent correlation then takes place between the transmembrane voltage fluctuations (also between the fluctuations in the gating variables) and the component of open channel fluctuations attributed to the above gate multiplicity. This cross correlation persistency is found to be playing a major augmentative role in the elevation of the cell’s excitability and spontaneous firing; without the persistency, the cell would be much less excitable. The cross correlation persistency is also found to enhance spike coherence. The stochastic Hodgkin–Huxley equations, put forward by Fox and Lu, are addressed in the context of their recognized failure to produce accurate enough statistics of spike generation. Our results indicate that the major source of that inaccuracy is the incapability of the stochastic Hodgkin–Huxley description to reflect the above cross correlation persistency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Bezrukov, S. M., & Vodyanoy, I. (1995). Noise-induced enhancement of signal transduction across voltage-dependent ion channels. Nature, 378, 362–364.

    Article  PubMed  CAS  Google Scholar 

  • Bruce, I. C. (2009). Evaluation of stochastic differential equation approximation of ion channel gating models. Annals of Biomedical Engineering, 37, 824–838.

    Article  PubMed  Google Scholar 

  • Chow, C. C., & White, J. A. (1996). Spontaneous action potentials due to channel fluctuations. Biophysical Journal, 71, 3013–3021.

    Article  PubMed  CAS  Google Scholar 

  • DeFelice, L. J., & Isaac, A. (1992). Chaotic states in a random world: Relationship between the nonlinear differential equations of excitability and the stochastic properties of ion channels. Journal of Statistical Physics, 70, 339–354.

    Article  Google Scholar 

  • Diba, K., Lester, H. A., & Koch, C. (2004). Intrinsic noise in cultured hippocampal neurons: Experiment and modeling. Journal of Neuroscience, 24, 9723–9733.

    Article  PubMed  CAS  Google Scholar 

  • Dorval, A. D., & White, J. A. (2005). Channel noise is essential for perithreshold oscillations in entorhinal stellate neurons. Journal of Neuroscience, 25, 10025–10028.

    Article  PubMed  CAS  Google Scholar 

  • Faisal, A. A., & Laughlin, S. B. (2007). Stochastic simulations on the reliability of action potential propagation in thin axons. PLoS Computational Biology, 3, e79.

    Article  Google Scholar 

  • Faisal, A. A., Selen, L. P. J., & Wolpert, D. M. (2008). Noise in the nervous system. Nature Reviews Neuroscience, 9, 292–303.

    Article  PubMed  CAS  Google Scholar 

  • Fox, R. F., & Lu, Y. N. (1994). Emergent collective behavior in large numbers of globally coupled independently stochastic ion channels. Physical Review E, 49, 3421–3431.

    Article  CAS  Google Scholar 

  • Güler, M. (2007). Dissipative stochastic mechanics for capturing neuronal dynamics under the influence of ion channel noise: Formalism using a special membrane. Physical Review E, 76, 041918(17).

    Article  Google Scholar 

  • Güler, M. (2008). Detailed numerical investigation of the dissipative stochastic mechanics based neuron model. Journal of Computational Neuroscience, 25, 211–227.

    Article  PubMed  Google Scholar 

  • Hille, B. (2001). Ionic channels of excitable membranes (3rd ed.). Massachusetts: Sinauer Associates.

    Google Scholar 

  • Hodgkin, A. L., & Huxley, A. F. (1952). A quantitative description of membrane current and its application to conduction and excitationin in nerve. Journal of Physiology (London. Print), 117, 500–544.

    CAS  Google Scholar 

  • Jacobson, G. A., et al. (2005). Subthreshold voltage noise of rat neocortical pyramidal neurones. Journal of Physiology, 564, 145–160.

    Article  PubMed  CAS  Google Scholar 

  • Jibril, G. O. & Güler, M. (2009). The renormalization of neuronal dynamics can enhance temporal synchronization among synaptically coupled neurons. In Proceedings of international joint conference on neural networks (pp. 1433–1438).

  • Johansson, S., & Ȧrhem, P. (1994). Single-channel currents trigger action potentials in small cultured hippocampal neurons. Proceedings of National Academy of Sciences USA, 91, 1761–1765.

    Article  CAS  Google Scholar 

  • Jung, P., & Shuai, J. W. (2001). Optimal sizes of ion channel clusters. Europhysics Letters, 56, 29–35.

    Article  CAS  Google Scholar 

  • Koch, C. (1999). Biophysics of computation: Information processing in single neurons. Oxford: Oxford University Press.

    Google Scholar 

  • Kole, M.H., Hallermann, S., & Stuart, G. J. (2006). Single I h channels in pyramidal neuron dendrites: Properties, distribution, and impact on action potential output. Journal of Neuroscience, 26, 1677–1687.

    Article  PubMed  CAS  Google Scholar 

  • Linaro, D., Storace, M., & Giugliano, M. (2011). Accurate and fast simulation of channel noise in conductance-based model neurons by diffusion approximation. PLoS Computational Biology, 7, e1001102.

    Article  Google Scholar 

  • Lynch, J., & Barry, P. (1989). Action potentials initiated by single channels opening in a small neuron (rat olfactory receptor). Biophysical Journal, 55, 755–768.

    Article  PubMed  CAS  Google Scholar 

  • Mino, H., Rubinstein, J. T., & White, J. A. (2002). Comparison of algorithms for the simulation of action potentials with stochastic sodium channels. Annals of Biomedical Engineering, 30, 578–587.

    Article  PubMed  Google Scholar 

  • Ochab-Marcinek, A., Schmid, G., Goychuk, I., & Hänggi, P. (2009). Noise-assisted spike propagation in myelinated neurons. Physical Review E, 79, 011904(7).

    Article  Google Scholar 

  • Özer, M. (2006). Frequency-dependent information coding in neurons with stochastic ion channels for subthreshold periodic forcing. Physics Letters A, 354, 258–263.

    Article  Google Scholar 

  • Rowat, P. F., & Elson R. C. (2004). State-dependent effects of Na channel noise on neuronal burst generation. Journal of Computational Neuroscience, 16, 87–112.

    Article  PubMed  Google Scholar 

  • Rubinstein, J. (1995). Threshold fluctuations in an N sodium channel model of the node of Ranvier. Biophysical Journal, 68, 779–785.

    Article  PubMed  CAS  Google Scholar 

  • Sakmann, B., & Neher, N. (1995). Single-channel recording (2nd ed.). New York: Plenum.

    Google Scholar 

  • Schmid, G., Goychuk, I., & Hänggi, P. (2001). Stochastic resonance as a collective property of ion channel assemblies. Europhysics Letters, 56, 22–28.

    Article  CAS  Google Scholar 

  • Schneidman, E., Freedman, B., & Segev, I. (1998). Ion channel stochasticity may be critical in determining the reliability and precision of spike timing. Neural Computation, 10, 1679–1703.

    Article  PubMed  CAS  Google Scholar 

  • Sengupta, B., Laughlin, S. B. & Niven J. E. (2010). Comparison of Langevin and Markov channel noise models for neuronal signal generation. Physical Review E, 81, 011918(12).

    Article  CAS  Google Scholar 

  • Sigworth, F. J. (1980). The variance of sodium current fluctuations at the node of Ranvier. Journal of Physiology (London Print), 307, 97–129.

    CAS  Google Scholar 

  • Strassberg, A. F., & DeFelice, L. J. (1993). Limitations of the Hodgkin–Huxley formalism: Effects of single channel kinetics on transmembrane voltage dynamics. Neural Computation, 5, 843–855.

    Article  Google Scholar 

  • White, J. A., Klink, R., Alonso, A., & Kay, A. R. (1998). Noise from voltage-gated ion channels may influence neuronal dynamics in the entorhinal cortex. Journal of Neurohysiology, 80, 262–269.

    CAS  Google Scholar 

  • Zeng, S., & Jung P. (2004). Mechanism for neuronal spike generation by small and large ion channel clusters. Physical Review E, 70, 011903(8).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marifi Güler.

Additional information

Action Editor: Carson C. Chow

Rights and permissions

Reprints and permissions

About this article

Cite this article

Güler, M. Persistent membranous cross correlations due to the multiplicity of gates in ion channels. J Comput Neurosci 31, 713–724 (2011). https://doi.org/10.1007/s10827-011-0337-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-011-0337-9

Keywords

Navigation