Skip to main content
Log in

A fast model of voltage-dependent NMDA receptors

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

NMDA receptors are among the crucial elements of central nervous system models. Recent studies show that both conductance and kinetics of these receptors are changing voltage-dependently in some parts of the brain. Therefore, several models have been introduced to simulate their current. However, on the one hand, kinetic models—which are able to simulate these voltage-dependent phenomena—are computationally expensive for modeling of large neural networks. On the other hand, classic exponential models, which are computationally less expensive, are not able to simulate the voltage-dependency of these receptors, accurately. In this study, we have modified these classic models to endow them with the voltage-dependent conductance and time constants. Temperature sensitivity and desensitization of these receptors are also taken into account. We show that, it is possible to simulate the most important physiological aspects of NMDA receptor’s behavior using only three to four differential equations, which is significantly smaller than the previous kinetic models. Consequently, it seems that our model is both fast and physiologically plausible and therefore is a suitable candidate for the modeling of large neural networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Banke, T. G., & Traynelis, S. F. (2003). Activation of NR1/NR2B NMDA receptors. Nature Neuroscience, 6(2), 144–152. doi:10.1038/nn1000.

    Article  PubMed  CAS  Google Scholar 

  • Benveniste, M., & Mayer, M. L. (1995). Trapping of glutamate and glycine during open channel block of rat hippocampal neuron NMDA receptors by 9-aminoacridine. Journal de Physiologie, 483(Pt 2), 367–384.

    CAS  Google Scholar 

  • Clarke, R. J., & Johnson, J. W. (2006). NMDA receptor NR2 subunit dependence of the slow component of magnesium unblock. Journal of Neuroscience, 26(21), 5825–5834. doi:10.1523/JNEUROSCI.0577-06.2006.

    Article  PubMed  CAS  Google Scholar 

  • Clarke, R. J., & Johnson, J. W. (2008). Voltage-dependent gating of NR1/2B NMDA receptors. Journal de Physiologie, 586(Pt 23), 5727–5741. doi:10.1113/jphysiol.2008.160622.

    Article  CAS  Google Scholar 

  • Dayan, P., & Abbott, L. F. (2001). Theoretical neuroscience: computational and mathematical modeling of neural systems (Computational neuroscience). Cambridge: Massachusetts Institute of Technology Press.

    Google Scholar 

  • Enoki, R., Kiuchi, T., Koizumi, A., Sasaki, G., Kudo, Y., & Miyakawa, H. (2004). NMDA receptor-mediated depolarizing after-potentials in the basal dendrites of CA1 pyramidal neurons. Neuroscience Research, 48(3), 325–333. doi:10.1016/j.neures.2003.11.011.

    Article  PubMed  CAS  Google Scholar 

  • Erreger, K., Dravid, S. M., Banke, T. G., Wyllie, D. J., & Traynelis, S. F. (2005). Subunit-specific gating controls rat NR1/NR2A and NR1/NR2B NMDA channel kinetics and synaptic signalling profiles. Journal de Physiologie, 563(Pt 2), 345–358. doi:10.1113/jphysiol.2004.080028.

    CAS  Google Scholar 

  • Hestrin, S., Sah, P., & Nicoll, R. A. (1990). Mechanisms generating the time course of dual component excitatory synaptic currents recorded in hippocampal slices. Neuron, 5(3), 247–253.

    Article  PubMed  CAS  Google Scholar 

  • Jahr, C. E., & Stevens, C. F. (1990). Voltage dependence of NMDA-activated macroscopic conductances predicted by single-channel kinetics. Journal of Neuroscience, 10(9), 3178–3182.

    PubMed  CAS  Google Scholar 

  • Kampa, B. M., Clements, J., Jonas, P., & Stuart, G. J. (2004). Kinetics of Mg2+ unblock of NMDA receptors: implications for spike-timing dependent synaptic plasticity. Journal de Physiologie, 556(Pt 2), 337–345. doi:10.1113/jphysiol.2003.058842.

    Article  CAS  Google Scholar 

  • Kim, N. K., & Robinson, H. P. (2011). Effects of divalent cations on slow unblock of native NMDA receptors in mouse neocortical pyramidal neurons. European Journal of Neuroscience, 34(2), 199–212. doi:10.1111/j.1460-9568.2011.07768.x.

    Article  PubMed  Google Scholar 

  • Korinek, M., Sedlacek, M., Cais, O., Dittert, I., & Vyklicky, L., Jr. (2010). Temperature dependence of N-methyl-D-aspartate receptor channels and N-methyl-D-aspartate receptor excitatory postsynaptic currents. Neuroscience, 165(3), 736–748. doi:10.1016/j.neuroscience.2009.10.058.

    Article  PubMed  CAS  Google Scholar 

  • Major, G., Polsky, A., Denk, W., Schiller, J., & Tank, D. W. (2008). Spatiotemporally graded NMDA spike/plateau potentials in basal dendrites of neocortical pyramidal neurons. Journal of Neurophysiology, 99(5), 2584–2601. doi:10.1152/jn.00011.2008.

    Article  PubMed  CAS  Google Scholar 

  • Misra, C., Brickley, S. G., Wyllie, D. J., & Cull-Candy, S. G. (2000). Slow deactivation kinetics of NMDA receptors containing NR1 and NR2D subunits in rat cerebellar Purkinje cells. Journal de Physiologie, 525(Pt 2), 299–305.

    Article  CAS  Google Scholar 

  • Polsky, A., Mel, B., & Schiller, J. (2009). Encoding and decoding bursts by NMDA spikes in basal dendrites of layer 5 pyramidal neurons. Journal of Neuroscience, 29(38), 11891–11903. doi:10.1523/JNEUROSCI.5250-08.2009.

    Article  PubMed  CAS  Google Scholar 

  • Schiller, J., & Schiller, Y. (2001). NMDA receptor-mediated dendritic spikes and coincident signal amplification. Current Opinion in Neurobiology, 11(3), 343–348.

    Article  PubMed  CAS  Google Scholar 

  • Sobolevsky, A. I., & Yelshansky, M. V. (2000). The trapping block of NMDA receptor channels in acutely isolated rat hippocampal neurones. Journal de Physiologie, 526(Pt 3), 493–506.

    CAS  Google Scholar 

  • Spruston, N., Jonas, P., & Sakmann, B. (1995). Dendritic glutamate receptor channels in rat hippocampal CA3 and CA1 pyramidal neurons. Journal de Physiologie, 482(Pt 2), 325–352.

    CAS  Google Scholar 

  • Suzuki, T., Kodama, S., Hoshino, C., Izumi, T., & Miyakawa, H. (2008). A plateau potential mediated by the activation of extrasynaptic NMDA receptors in rat hippocampal CA1 pyramidal neurons. European Journal of Neuroscience, 28(3), 521–534. doi:10.1111/j.1460-9568.2008.06324.x.

    Article  PubMed  Google Scholar 

  • Traynelis, S. F., Wollmuth, L. P., McBain, C. J., Menniti, F. S., Vance, K. M., Ogden, K. K., et al. (2010). Glutamate receptor ion channels: structure, regulation, and function. Pharmacological Reviews, 62(3), 405–496. doi:10.1124/pr.109.002451.

    Article  PubMed  CAS  Google Scholar 

  • Varela, J. A., Sen, K., Gibson, J., Fost, J., Abbott, L. F., & Nelson, S. B. (1997). A quantitative description of short-term plasticity at excitatory synapses in layer 2/3 of rat primary visual cortex. Journal of Neuroscience, 17(20), 7926–7940.

    PubMed  CAS  Google Scholar 

  • Vargas-Caballero, M., & Robinson, H. P. (2003). A slow fraction of Mg2+ unblock of NMDA receptors limits their contribution to spike generation in cortical pyramidal neurons. Journal of Neurophysiology, 89(5), 2778–2783. doi:10.1152/jn.01038.2002.

    Article  PubMed  CAS  Google Scholar 

  • Vargas-Caballero, M., & Robinson, H. P. (2004). Fast and slow voltage-dependent dynamics of magnesium block in the NMDA receptor: the asymmetric trapping block model. Journal of Neuroscience, 24(27), 6171–6180. doi:10.1523/JNEUROSCI.1380-04.2004.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gholamreza Kaka.

Additional information

Action Editor: Alain Destexhe

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moradi, K., Moradi, K., Ganjkhani, M. et al. A fast model of voltage-dependent NMDA receptors. J Comput Neurosci 34, 521–531 (2013). https://doi.org/10.1007/s10827-012-0434-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-012-0434-4

Keywords

Navigation