Skip to main content
Log in

Biological modeling of complex chemotaxis behaviors for C. elegans under speed regulation—a dynamic neural networks approach

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

In this paper, the modeling of several complex chemotaxis behaviors of C. elegans is explored, which include food attraction, toxin avoidance, and locomotion speed regulation. We first model the chemotaxis behaviors of food attraction and toxin avoidance separately. Then, an integrated chemotaxis behavioral model is proposed, which performs the two chemotaxis behaviors simultaneously. The novelty and the uniqueness of the proposed chemotaxis behavioral models are characterized by several attributes. First, all the chemotaxis behavioral model sare on biological basis, namely, the proposed chemotaxis behavior models are constructed by extracting the neural wire diagram from sensory neurons to motor neurons, where sensory neurons are specific for chemotaxis behaviors. Second, the chemotaxis behavioral models are able to perform turning and speed regulation. Third, chemotaxis behaviors are characterized by a set of switching logic functions that decide the orientation and speed. All models are implemented using dynamic neural networks (DNN) and trained using the real time recurrent learning (RTRL) algorithm. By incorporating a speed regulation mechanism, C. elegans can stop spontaneously when approaching food source or leaving away from toxin. The testing results and the comparison with experiment results verify that the proposed chemotaxis behavioral models can well mimic the chemotaxis behaviors of C. elegans in different environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  • Altun, Z.F., & Hall, D.H. (2006). WormAtlas. http://www.wormatlas.org. Accessed 25 Oct. 2010.

  • Bargmann, C.I., & Horvitz, H.R. (1991). Chemosensory neurons with overlapping functions direct chemotaxis to multiple chemicals in C. elegans. Neuron, 7(5), 729–742.

    Article  PubMed  CAS  Google Scholar 

  • Berri, S., Boyle, J.H., Tassieri, M., Hope, I.A., Cohen, N. (2009). Forward locomotion of the nematode C. elegans is achieved through modulation of a single gait. HFSP Journal, 3(3), 186–193.

    Article  PubMed  Google Scholar 

  • Bhatla, N. (2009). WormWeb. http://www.wormweb.org. Accessed 26 Mar 2010.

  • Boyle, J.H. (2009). C. elegans locomotion: An integrated approach. Ph.D. Thesis. University of Leeds.

  • Boyle, J.H., & Cohen, N. (2008). Caenorhabditis elegans body wall muscles are simple actuators. Biosystems, 94, 170–181.

    Article  PubMed  CAS  Google Scholar 

  • Boyle, J.H., John, A.B., Cohen, N. (2008). An integrated neuromechanical model of C. elegans forward locomotion. LNCS, 4984, 37–47.

    Google Scholar 

  • Culotti, J.G., & Russell, R.L. (1978). Osmotic avoidance defective mutants of the nematode Caenorhabditis elegans. Genetics, 90(2), 243–256.

    PubMed  CAS  Google Scholar 

  • Dunn, N.A. (2006). A novel neural network analysis method applied to biological neural networks. Ph.D. Thesis, University of Oregon, America.

  • Dunn, N.A., & Lockery, S.R. (2004). A neural network model of chemotaxis predicts functions of synaptic connections in the nematode Caenorhabditis elegans. Journal of Computational Neuroscience, 17(2), 137–147.

    Article  PubMed  Google Scholar 

  • Dunn, N.A., Pierce-Shimomura, J.T., Conery, J.S., Lockery, S.R. (2006). Clustered neural dynamics identify motifs for chemotaxis in Caenorhabditis elegans. In International joint conference on neural network (IJCNN 2006) (pp. 547–554).

  • Ferrée, T.C., & Lockery, S.R. (1998). Chemotaxis control by linear recurrent networks. In Proc. of the sixth annual conference on computational neuroscience: Trends in research (pp. 373–377).

  • Ferrée, T.C., & Lockery, S.R. (1999). Computational rules for chemotaxis in the nematode C. elegans. Journal of Computational Neuroscience, 6(3), 263–277.

    Article  PubMed  Google Scholar 

  • Ferrée, T.C., Marcotte, B.A., Lockery, S.R. (1996). Neural networkmodels of chemotaxis in the nematode Caenorhabditis elegans. Advances in Neural Information Processing Systems, 9, 55–61.

    Google Scholar 

  • Gray, J.M., Hill, J.J., Bargmann, C.I. (2005). A circuit for navigation in Caenorhabditis elegans. Proceedings of the National Academy of Sciences of the United States of America, 102(9), 3184–3191.

    Article  PubMed  CAS  Google Scholar 

  • Hamm, L., Wade Brorsen, B., Hagan, M.T. (2002). Global optimization of neural network weights. In Proc. of the 2002 international joint conference on neural networks (IJCNN) (Vol. 2002, pp. 1228–1233).

  • Iino, Y., & Yoshida, K. (2009). Parallel use of two behavioral mechanisms for chemotaxis in Caenorhabditis elegans. Journal of Neuroscience, 29(17), 5370–5380.

    Article  PubMed  CAS  Google Scholar 

  • Izquierdo, E.J., & Lockery, S.R. (2010). Evolution and analysis of minimal neural circuits for klinotaxis in Caenorhabditis elegans. Journal of Neuroscience, 30(39), 12908–12917.

    Article  PubMed  CAS  Google Scholar 

  • Jim, K., Giles, C.L., Horne, B.G. (1996). An analysis of noise in recurrent neural networks: convergence and generalization. IEEE Transactions on Neural Networks, 7(6), 1424–1438.

    Article  PubMed  CAS  Google Scholar 

  • Karbowski, J., Schindelman, G., et al. (2008). Systems level circuit model of C. elegans undulatory locomotion: mathematical modeling and molecular genetics. Journal of Computational Neuroscience, 24(3), 253–276.

    Article  PubMed  Google Scholar 

  • Kawano, T., Po, M.D., Gao, S., Leung, G., Ryu, W.S., Zhen, M. (2011). An imbalancing act: Gap junctions reduce the backward motor circuit activity to bias C. elegans for forward locomotion. Neuron, 72(4), 572–586.

    Article  PubMed  CAS  Google Scholar 

  • Lari-Najafi, H., Nasiruddin, M., Samad, T. (1989). Effect of initial weights on back-propagation and its variations. In IEEE international conference on systems, man and cybernetics (pp. 218–219).

  • Lee, Y., Oh, S.H., Kim, M.W. (1991). The effect of initial weights on premature saturation in back-propagation learning. In Proc. of the international joint conference on neural networks (pp. 765–770).

  • Leung, M.C.K., Williams, P.L., et al. (2008). Caenorhabditis elegans: an emerging model in biomedical and environmental toxicology. Toxicological Sciences, 106(1), 5–28.

    Article  PubMed  CAS  Google Scholar 

  • Lockery, S.R. (2011). The computational worm: spatial orientation and its neuronal basis in C. elegans. Current Opinion in Neurobiology, 21(5), 728–790.

    Article  Google Scholar 

  • Maass, W. (1997). Networks of spiking neurons: the third generation of neural network models. Neural Networks, 10(9), 1659–1671.

    Article  Google Scholar 

  • Pierce-Shimomura, J.T., Morse, T.M., Lockery, S.R. (1999). The fundamental role of pirouettes in Caenorhabditis elegans chemotaxis. Journal of Neuroscience, 19(21), 9557–9569.

    PubMed  CAS  Google Scholar 

  • Pierce-Shimomura, J.T., Dores, M., Lockery, S.R. (2005). Analysis of the effects of turning bias on chemotaxis in C. elegans. Journal of Experimental Biology, 208(24), 4727–4733.

    Article  PubMed  Google Scholar 

  • Piggott, B.J., Liu, J., Feng, Z., Wescott, S.A., Shawn, Xu, X.Z. (2011). The neural circuits and synaptic mechanisms underlying motor initiation in C. elegans. Cell, 147(4), 922–933.

    Article  PubMed  CAS  Google Scholar 

  • Rankin, C.H. (2005). Nematode memory: Now, where was I? Current Biology, 15(10), 374–375.

    Article  Google Scholar 

  • Riddle, D.L., Blumenthal, T., Meyer, B.J., Priess, J.R. (1997). C. elegans II. New York: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  • Saseetharran, M. (1996). Experiments that reveal the limitations of the small initial weights and the importance of the modified neural model. In Proc. of international conference on neural networks (ICNN) (Vol. 1996, pp. 442–447).

  • Steel, R.G.D., & Torrie, J.H. (1960). Principles and procedures of statistics (pp. 187–287). New York: McGraw-Hill.

    Google Scholar 

  • Stephens, G.J., Johnson-Kerner, B., Bialek, W., Ryu, W.S. (2010). From modes to movement in the behavior of Caenorhabditis elegans. PLoS ONE, 5(11), e13914.

    Article  PubMed  Google Scholar 

  • Suzuki, M., Tsuji, T., Ohtake, H. (2005a). A neuromuscular model of C. elegans with directional control. In Proc. of the first international conference on complex medical engineering (pp. 167–172).

  • Suzuki, M., Tsuji, T., Ohtake, H. (2005b). A dynamic body model of the nematode C. elegans with a touch-response circuit. In IEEEinternational conference on robotics and biomimetics (ROBIO 2005) (Vol. 2005, pp. 538–543).

  • Suzuki, M., Tsuji, T., Ohtake, H. (2005c). A model of motor control of the nematode C. elegans with neuronal circuits. Artificial Intelligence in Medicine, 35, 75–86.

    Article  PubMed  Google Scholar 

  • Suzuki, M., Goto, T., Tsuji, T., Ohtake, H. (2004). A motor control model of the nematode C. elegans. In IEEE international conference on robotics and biomimetics (ROBIO 2004) (pp. 879–884).

  • Suzuki, H., Thiele, T.R., Faumont, S., Ezcurra, M., Lockery, S.R., Schafer, W.R. (2008). Functional asymmetry in Caenorhabditis elegans taste neurons and its computational role in chemotaxis. Nature, 454, 114–117.

    Article  PubMed  CAS  Google Scholar 

  • White, J.G., Southgate, E., Thomson, J.N., Brenner, S. (1986). The structure of the nervous system of the nematode Caenorhabditis elegans. Philosophical Transactions. Royal Society of London, 314, 1–340.

    Article  CAS  Google Scholar 

  • Williams, R.J., & Zipser, D. (1989). A learning algorithm for continually running fully recurrent neural networks. Neural Computation, 1, 270–280.

    Article  Google Scholar 

  • Wu, Y., & Zhang, L. (2002). The effect of initial weight, learning rate and regularization on generalization performance and efficiency. In Proc. of international conference on signal processing (ICSP) (Vol. 2002, pp. 1191–1194).

  • Xu, J.X., Deng, X. (2010). Study on chemotaxis behaviors of C. elegans using dynamic neural network models: from artificial to biological model. Journal of Biological Systems, 18, 3–33.

    Article  Google Scholar 

  • Ye, H.Y., Ye, B.P., Wang, D.Y. (2008). Molecular control of memory in nematode Caenorhabditis elegans. Neuroscience Bulletin, 24(1), 49–55.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Xin Xu.

Additional information

Action Editor: C. Linster

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, JX., Deng, X. Biological modeling of complex chemotaxis behaviors for C. elegans under speed regulation—a dynamic neural networks approach. J Comput Neurosci 35, 19–37 (2013). https://doi.org/10.1007/s10827-012-0437-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-012-0437-1

Keywords

Navigation