Skip to main content
Log in

The role of multiple chemotactic mechanisms in a model of chemotaxis in C. elegans: different mechanisms are specialised for different environments

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Unlike simpler organisms, C. elegans possesses several distinct chemosensory pathways and chemotactic mechanisms. These mechanisms and pathways are individually capable of driving chemotaxis in a chemical concentration gradient. However, it is not understood if they are redundant or co-operate in more sophisticated ways. Here we examine the specialisation of different chemotactic mechanisms in a model of chemotaxis to NaCl. We explore the performance of different chemotactic mechanisms in a range of chemical gradients and show that, in the model, far from being redundant, the mechanisms are specialised both for different environments and for distinct features within those environments. We also show that the chemotactic drive mediated by the ASE pathway is not robust to the presence of noise in the chemical gradient. This problem cannot be solved along the ASE pathway without destroying its ability to drive chemotaxis. Instead, we show that robustness to noise can be achieved by introducing a second, much slower NaCl-sensing pathway. This secondary pathway is simpler than the ASE pathway, in the sense that it can respond to either up-steps or down-steps in NaCl but not both, and could correspond to one of several candidates in the literature which we identify and evaluate. This work provides one possible explanation of why there are multiple NaCl sensing pathways and chemotactic mechanisms in C. elegans: rather than being redundant the different pathways and mechanism are specialised both for the characteristics of different environments and for distinct features within a single environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Appleby, P.A. (2012). A model of chemotaxis and associative learning in C. elegans. Biological Cybernetics, 106, 373–387.

    Article  PubMed  Google Scholar 

  • Bargmann, C., & Horvitz, H. (1991). Chemosensory neurons with overlapping functions direct chemotaxis to multiple chemicals in C. elegans. Neuron, 7, 729–42.

    Article  CAS  PubMed  Google Scholar 

  • Chao, M., Komatsu, H., Fukuto, H., Dionne, H., Hart, A. (2004). Feeding status and serotonin rapidly and reversibly modulate a caenorhabditis elegans chemosensory circuit. Proceedings of the National Academy of Science, 101, 15512–15517.

    Article  CAS  Google Scholar 

  • Chen, B., Hall, D., Chklovskii, D. (2006). Wiring optimization can relate neuronal structure and function. Proceedings of the National Academy of Science, 103, 4723–4728.

    Article  CAS  Google Scholar 

  • Dunn, N., Lockery, S., Pierce-Shimomura, J., Conery, J. (2004). A neural network model of chemotaxis predicts functions of synaptic connections in the nematode caenorhabditis elegans. Journal of Computational Neuroscience, 17, 137–147.

    Article  PubMed  Google Scholar 

  • Eisenbach, M., & Lengeler, J. (2004). Chemotaxis. Imperial College Press.

  • Ferrée, T., & Lockery, S. (1999). Computational rules for chemotaxis in the nematode C. elegans. Journal of Computational Neuroscience, 6, 263–277.

    Article  PubMed  Google Scholar 

  • Hall, D., & Russell, R. (1991). The posterior nervous system of the nematode caenorhabditis elegans: serial reconstruction of identified neurons and complete pattern of synaptic interactions. Journal of Neuroscience, 11, 122.

    Google Scholar 

  • Hills, T., Brockie, P., Maricq, A. (2004). Dopamine and glutamate control area-restricted search behavior in caenorhabditis elegans. Journal of Neuroscience, 24, 1217–1225.

    Article  CAS  PubMed  Google Scholar 

  • Hukema, R., Rademakers, S., Dekkers, M., Burghoorn, J., Jansen, G. (2006). Antagonistic sensory cues generate gustatory plasticity in caenorhabditis elegans. EMBO Journal, 25, 312–322.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Iino, Y., & Yoshida, K. (2009). Parallel use of two behavioural mechanisms for chemotaxis in caenorhabditis elegans. Journal of Neuroscience, 29, 5370–5380.

    Article  CAS  PubMed  Google Scholar 

  • Izquierdo, E., & Lockery, S. (2010). Evolution and analysis of minimal neural circuits for klinotaxis in caenorhabditis elegans. Journal of Neuroscience, 30, 12908–12917.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Miller, A., Thiele, T., Faumont, S., Moravec, M., Lockery, S. (2005). Step-response analysis of chemotaxis in caenorhabditis elegans. Journal of Neuroscience, 25, 3369–3378.

    Article  CAS  PubMed  Google Scholar 

  • Nuttley, W., Atkinson-Leadbeater, K., van der Kooy, D. (2002). Serotonin mediates food-odor associative learning in the nematode caenorhabditis elegans. Proceedings of the National Academy of Science, 99, 12449–12454.

    Article  CAS  Google Scholar 

  • Pierce-Shimomura, J., Dores, M., Lockery, S. (2005). Analysis of the effects of turning bias on chemotaxis in C. elegans. Journal of Experimental Biology, 208, 4727–4733.

    Article  PubMed  Google Scholar 

  • Pierce-Shimomura, J., Morse, T., Lockery, S. (1999). The fundamental role of pirouettes in caenorhabditis elegans chemotaxis. Journal of Neuroscience, 19, 9557–9569.

    CAS  PubMed  Google Scholar 

  • Saeki, S., Yamamoto, M., Iino, Y. (2001). Plasticity of chemotaxis revealed by paired presentation of a chemoattractant and starvation in the nematode caenorhabditis elegans. Experimental Biology, 204, 1757–1764.

    CAS  Google Scholar 

  • Sambongi, Y., Nagae, T., Liu, Y., Yoshimizu, T., Takeda, K., Wada, Y., Futai, M. (1999). Sensing of cadmium and copper ions by externally exposed adl, ase, and ash neurons elicits avoidance response in caenorhabditis elegans. NeuroReport, 10, 753–757.

    Article  CAS  PubMed  Google Scholar 

  • Stetak, A., Horndli, F., Maricq, A., van den Heuvel, S., Hajnal, A. (2009). Neuron-specific regulation of associative learning and memory by magi-1 in C. elegans. PLoS ONE, 4, e6019.

    Article  PubMed Central  PubMed  Google Scholar 

  • Suzuki, H., Thiele, T., Faumont, S., Ezcurra, M., Lockery, S., Schafer, W. (2008). Functional asymmetry in caenorhabditis elegans taste neurons and its computational role in chemotaxis. Nature, 454, 114–117.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Thiele, T., Faumont, S., Lockery, S. (2009). The neural network for chemotaxis to tastants in caenorhabditis elegans is specialized for temporal differentiation. Journal of Neuroscience, 29, 11904–11911.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Torayama, I., Ishihara, T., Katsura, I. (2007). Caenorhabditis elegans integrates the signals of butanone and food to enhance chemotaxis to butanone. Journal of Neuroscience, 27, 741–50.

    Article  CAS  PubMed  Google Scholar 

  • Ward, S. (1973). Chemotaxis by the nematode caenorhabditis elegans: identification of attractants and analysis of the response by use of mutants. Proceedings of the National Academy of Science, 70, 817–821.

    Article  CAS  Google Scholar 

  • Ward, S., Thomson, N., White, J.G., Brenner, S. (1975). Electron microscopical reconstruction of the anterior sensory anatomy of the nematode caenorhabditis elegans. Journal of Comparative Neurology, 160, 313–337.

    Article  CAS  PubMed  Google Scholar 

  • Ware, R., Clark, D., Crossland, K., Russell, R. (1975). The nerve ring of the nematode caenorhabditis elegans: sensory input and motor output. Journal of Comparative Neurology, 162, 71–110.

    Article  Google Scholar 

  • White, J., Southgate, E., Thomson, J., Brenner, S. (1986). The structure of the nervous system of the nematode C. elegans. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 314, 1–340.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, B., Khare, P., Feldman, L., Dent, J. (2003). Reversal frequency in caenorhabditis elegans represents an integrated response to the state of the animal and its environment. Journal of Neuroscience, 23, 5319–5328.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter A. Appleby.

Additional information

Action Editor: C. Linster

Conflict of interests

No conflicts of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

PDF 33.1 KB

Rights and permissions

Reprints and permissions

About this article

Cite this article

Appleby, P.A. The role of multiple chemotactic mechanisms in a model of chemotaxis in C. elegans: different mechanisms are specialised for different environments. J Comput Neurosci 36, 339–354 (2014). https://doi.org/10.1007/s10827-013-0474-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-013-0474-4

Keywords

Navigation